Entity

Time filter

Source Type

Graz, Austria

Scheikl U.,Medical University of Vienna | Tsao H.-F.,University of Vienna | Horn M.,University of Vienna | Indra A.,AGES | Walochnik J.,Medical University of Vienna
Parasitology Research | Year: 2016

Free-living amoebae (FLA) are widely spread in the environment and known to cause rare but often serious infections. Besides this, FLA may serve as vehicles for bacterial pathogens. In particular, Legionella pneumophila is known to replicate within FLA thereby also gaining enhanced infectivity. Cooling towers have been the source of outbreaks of Legionnaires’ disease in the past and are thus usually screened for legionellae on a routine basis, not considering, however, FLA and their vehicle function. The aim of this study was to incorporate a screening system for host amoebae into a Legionella routine screening. A new real-time PCR-based screening system for various groups of FLA was established. Three cooling towers were screened every 2 weeks over the period of 1 year for FLA and Legionella spp., by culture and molecular methods in parallel. Altogether, 83.3 % of the cooling tower samples were positive for FLA, Acanthamoeba being the dominating genus. Interestingly, 69.7 % of the cooling tower samples were not suitable for the standard Legionella screening due to their high organic burden. In the remaining samples, positivity for Legionella spp. was 25 % by culture, but overall positivity was 50 % by molecular methods. Several amoebal isolates revealed intracellular bacteria. © 2016 The Author(s) Source


Brevik E.C.,Dickinson State University | Calzolari C.,CNR Institute for Biometeorology | Miller B.A.,Leibniz Center for Agricultural Landscape Research | Pereira P.,Mykolas Romeris University | And 3 more authors.
Geoderma | Year: 2015

Soil mapping, classification, and pedologic modeling have been important drivers in the advancement of our understanding of soil from the earliest days of the scientific study of soils. Soil maps were desirable for purposes of land valuation for taxation, agronomic planning, and even in military operations. Soil mapping required classification systems that would allow communication of mapped information, classification systems required understanding of the soil system, and gaining that understanding included the creation of soil models. Therefore, advancement in one of these highly interrelated areas tended to lead to corresponding advances in the others, and these relationships persist into the modern era. Although many advances in our understanding of the soil system have been made since the late 1800s, when soil science blossomed into a scientific discipline in its own right, there are still many unanswered questions and additional needs in soil mapping, classification, and pedologic modeling. New technologies including GPS, GIS, remote sensing, on-site geophysical instrumentation (EMI, GPR, PXRF, etc.), and the development of statistical and geostatistical techniques have greatly increased our ability to collect, analyze, and predict spatial information related to soils, but linking all of this new information to soil properties and processes can still be a challenge and enhanced pedologic models are needed. The expansion of the use of soil knowledge to address issues beyond agronomic production, such as land use planning, environmental concerns, food security, energy security, water security, and human health, to name a few, requires new ways to communicate what we know about the soils we map as well as bringing forth research questions that were not widely considered in earlier soils studies. At present this information is communicated using dozens of national soil classification systems as well as WRB, but a more universal soil classification system would facilitate international communication of soils information. There are still many significant needs in the area of soil mapping, classification, and pedologic modeling going into the future. © 2015 Elsevier B.V. Source


Gollner G.,University of Vienna | Gabler C.,University of Vienna | Grausgruber-Groger S.,AGES | Friedel J.K.,University of Vienna | And 2 more authors.
Journal fur Kulturpflanzen | Year: 2010

The grain legumes lens (Lens culinaris), grass pea (Lathyrus sativus) and field pea (Pisum sativum) were examined as pure crops and in different mixing ratios with false flax (Camelina sativa) on organically cultivated fields of the University of Natural Resources and Life Sciences, Vienna, in the Pannonian region in three consecutive vegetation periods. The aim of this study was to test whether a mixed stand of grain legume and false flax shows advantages compared to the pure crops despite an increased competition between the partners in the mixture under the dry conditions. Therefore, the optimum seed density for the partners in the mixed stand under the Pannonian conditions was identified. The weather conditions varied widely within the three vegetation periods and influenced the yield of the mixtures. Under the favourable weather conditions in the first experimental year, the mixed stands of lens-false flax and grass pea-false flax showed benefits in yield. On average across three very different years, a mixture of false flax: lens at 25:75 percent had the most positive mixture cropping effect. An average of 0.6 t ha -1 false flax was achieved in mixed stands with lentils and in mixtures with grass pea and field pea with high false flax percentage. In general, the positive effect of the substitutive lens-false flax and grass pea-false flax mixed stands was higher in the favourable, wet years than the negative effect in the unfavourable, dry year. We therefore recommend these grain legume-false flax mixed stands for the dry regions in Eastern Austria and for climatically similar regions in Hungary or Central Germany. Source


Desilva B.,Bristol Myers Squibb | Garofolo F.,Algorithme Pharma Inc. | Rocci M.,ICON Development Solutions | Martinez S.,Algorithme Pharma Inc. | And 36 more authors.
Bioanalysis | Year: 2012

Over 400 professionals representing pharmaceutical companies, CROs, and multiple regulatory agencies participated in the 6th Workshop on Recent Issues in Bioanalysis (WRIB). Like the previous sessions, this event was in the format of a practical, focused, highly interactive and informative workshop aiming for high-quality, improved regulatory compliance and scientific excellence. Numerous 'hot topics in bioanalysis of both small and large molecules were shared and discussed, leading to consensus and recommendations among panelists and attendees representing the bioanalytical community. The major outcome of this years workshop was the noticeable alignment of multiple bioanalytical guidance/guidelines from different regulatory agencies. This represents a concrete step forward in the global harmonization of bioanalytical activities. The present 2012 White Paper acts as a practical and useful reference document that provides key information and solutions on several topics and issues in the constantly evolving world of bioanalysis. © 2012 Future Science Ltd. Source


Brevik E.C.,Dickinson State University | Calzolari C.,CNR Institute for Biometeorology | Miller B.A.,Leibniz Center for Agricultural Landscape Research | Miller B.A.,Iowa State University | And 4 more authors.
Geoderma | Year: 2016

Soil mapping, classification, and pedologic modeling have been important drivers in the advancement of our understanding of soil from the earliest days of the scientific study of soils. Soil maps were desirable for purposes of land valuation for taxation, agronomic planning, and even in military operations. Soil mapping required classification systems that would allow communication of mapped information, classification systems required understanding of the soil system, and gaining that understanding included the creation of soil models. Therefore, advancement in one of these highly interrelated areas tended to lead to corresponding advances in the others, and these relationships persist into the modern era. Although many advances in our understanding of the soil system have been made since the late 1800s, when soil science blossomed into a scientific discipline in its own right, there are still many unanswered questions and additional needs in soil mapping, classification, and pedologic modeling. New technologies including GPS, GIS, remote sensing, on-site geophysical instrumentation (EMI, GPR, PXRF, etc.), and the development of statistical and geostatistical techniques have greatly increased our ability to collect, analyze, and predict spatial information related to soils, but linking all of this new information to soil properties and processes can still be a challenge and enhanced pedologic models are needed. The expansion of the use of soil knowledge to address issues beyond agronomic production, such as land use planning, environmental concerns, food security, energy security, water security, and human health, to name a few, requires new ways to communicate what we know about the soils we map as well as bringing forth research questions that were not widely considered in earlier soils studies. At present this information is communicated using dozens of national soil classification systems as well as WRB, but a more universal soil classification system would facilitate international communication of soils information. There are still many significant needs in the area of soil mapping, classification, and pedologic modeling going into the future. © 2015 Elsevier B.V.. Source

Discover hidden collaborations