Affiliated Institute of ETRI

Daejeon, South Korea

Affiliated Institute of ETRI

Daejeon, South Korea
Time filter
Source Type

Oh J.,Affiliated Institute of ETRI | Park J.,Affiliated Institute of ETRI | Park S.,Affiliated Institute of ETRI | Won J.-J.,Affiliated Institute of ETRI
IEEE International Conference on Cloud Computing, CLOUD | Year: 2017

Authentication as a Service (AaaS) provides ondemand delivery of multi-factor authentication (MFA). However, current AaaS has left out of consideration the trustworthiness of user inputs at client devices and the risk of privacy exposure at the AaaS providers. To solve these concerns, we present TAaaS, Trustworthy Authentication as a Service, which offers a trusted path-based MFA service to the service provider in the cloud. TAaaS leverages the hypervisor-based trusted path to ensure the trustworthiness of user inputs, and addresses privacy concerns in the cloud by storing only the irreversible user account information. We implement two endto-end prototypes and evaluate our work to show its feasibility and security. © 2016 IEEE.

Kwak J.,Hanyang University | Kim H.C.,Affiliated Institute of ETRI | Park I.H.,Affiliated Institute of ETRI | Song Y.H.,Hanyang University
Proceedings of 2016 5th International Conference on Network Infrastructure and Digital Content, IEEE IC-NIDC 2016 | Year: 2017

Unlike hard disk drive (HDD)-based storage systems, NAND flash memory-based storage systems require an additional layer called the flash translation layer (FTL) between the file system and storage devices. The FTL helps file systems use NAND flash memory in the same way as HDD by using the address mapping function. However, this function can produce a side effect of delaying the physical erasure point of data when deleting data. In this paper, we analyze the time delay phenomenon of data erasure from the flash storage device that uses the FTL and propose the anti-forensic deletion scheme, which can minimize the delay time. The experimental results confirm that the proposed deletion scheme is effective in reducing the delay time of data erasing. © 2016 IEEE.

Do C.T.,Chonnam National University | Choi H.-J.,Affiliated Institute of ETRI | Kim J.M.,University of Ulsan | Kim C.H.,Chonnam National University
Microprocessors and Microsystems | Year: 2015

Cache memory plays a crucial role in determining the performance of processors, especially for embedded processors where area and power are tightly constrained. It is necessary to have effective management mechanisms, such as cache replacement policies, because modern embedded processors require not only efficient power consumption but also high performance. Practical cache replacement algorithms have focused on supporting the increasing data needs of processors. The commonly used Least Recently Used (LRU) replacement policy always predicts a near-immediate re-reference interval, hence, applications that exhibit a distant re-reference interval may perform poorly under LRU replacement policy. In addition, recent studies have shown that the performance gap between LRU and theoretical optimal replacement (OPT) is large for highly-associative caches. LRU policy is also susceptible to memory-intensive workloads where a working set is greater than the available cache size. These reasons motivate the design of alternative replacement algorithms to improve cache performance. This paper explores a low-overhead, high-performance cache replacement policy for embedded processors that utilizes the mechanism of LRU replacement. Experiments indicate that the proposed policy can result in significant improvement of performance and miss rate for large, highly-associative last-level caches. The proposed policy is based on the tag-distance correlation among cache lines in a cache set. Rather than always replacing the LRU line, the victim is chosen by considering the LRU-behavior bit of the line combined with the correlation between the cache lines' tags of the set and the requested block's tag. By using the LRU-behavior bit, the LRU line is given a chance of residing longer in the set instead of being replaced immediately. Simulations with an out-of-order superscalar processor and memory-intensive benchmarks demonstrate that the proposed cache replacement algorithm can increase overall performance by 5.15% and reduce the miss rate by an average of 11.41%. © 2015 Elsevier B.V. All rights reserved.

Park Y.,Kyungpook National University | Lee S.,Kyungpook National University | Kim C.,Affiliated Institute of ETRI
International Journal of Distributed Sensor Networks | Year: 2016

Wireless sensor networks (WSNs) are ad-hoc networks composed primarily of a large number of sensor nodes with limited power, computation, storage and communication capabilities. The issue of securing and authenticating communications in such a network is problematic, and thus an adversary has an opportunity to capture a sensor node directly from the target field and extract all the information from its memory. In 2013, Yoon and Kim proposed an advanced biometric-based user authentication scheme for WSNs. Choi et al. analyzed Yoon and Kim's scheme and performed a security cryptanalysis in 2016. They demonstrated that Yoon and Kim's scheme had several security problems, and proposed instead an improved biometric-based user authentication scheme using fuzzy extraction. However, we cryptanalyze Choi et al.'s scheme and demonstrate that their scheme is vulnerable to insider attack and has a problem with smart card revocation/reissue. To overcome these drawbacks, we propose a secure biometric-based authentication scheme in WSNs that is secure against inside adversaries and provides secure and efficient smart card revocation/reissue. ©The Author(s) 2016.

Kim T.,Electronics and Telecommunications Research Institute | Kim T.,Korea Advanced Institute of Science and Technology | Seo S.C.,Affiliated Institute of ETRI | Kim D.,Korea Advanced Institute of Science and Technology
Journal of Parallel and Distributed Computing | Year: 2015

During several decades, there have been many researches on approximation algorithms for constructing minimum routing cost tree (MRCT) that minimizes the sum of routing cost of all pairs in a tree topology. Existing algorithms have been mainly studied in the field of graph theory, thus it is difficult to apply them to multi-hop wireless ad-hoc networks due to the theoretical and centralized methodology. In addition, wireless ad-hoc network protocols restrict the maximum degree, which is the maximum number of children a parent may have, in order to prevent excessive concentration of traffic. However, this limitation has not been considered by any existing algorithms. In this paper, we define the degree constrained MRCT (DC-MRCT) problem and extract the characteristics of DC-MRCT by analyzing all possible tree topologies for the given number of nodes. Based on these characteristics that DC-MRCT has the minimum sum of tree level and the maximum square sum of subtree sizes, we propose a distributed DC-MRCT Formation (DC-MRCTF) algorithm that can be applicable to any type of wireless ad-hoc network protocols working on tree topology. Performance evaluation shows that DC-MRCTF gives noticeable benefit for up to 80% of individual communication pair compared with the representative tree formation algorithm in ZigBee as well as significantly reduces the sum of routing cost of all pairs regardless of network density. © 2015 Elsevier Inc. All rights reserved.

Park J.,Affiliated Institute of ETRI | Park S.,Affiliated Institute of ETRI | Oh J.,Affiliated Institute of ETRI | Won J.-J.,Affiliated Institute of ETRI
Proceedings - 2016 IEEE World Congress on Services, SERVICES 2016 | Year: 2016

Intel Software Guard Extensions (SGX) can address the information disclosure in cloud computing. However, the existing virtual machine managers do not provide the efficient management operations of the SGX-enabled virtual machines (VMs) like live migration. In this paper, we identify challenges and propose a novel approach and its implementation model to migrate the SGX-enabled VMs. As future work, we will design the protocol and new instructions for live migration of the SGX-enabled VMs, and implement them on top of OpenSGX, an open source SGX emulator. © 2016 IEEE.

Yang S.J.,Affiliated Institute of ETRI | Choi J.H.,Affiliated Institute of ETRI | Kim K.B.,Affiliated Institute of ETRI | Chang T.,Affiliated Institute of ETRI
Digital Investigation | Year: 2015

Abstract Android remains the dominant OS in the smartphone market even though the iOS share of the market increased during the iPhone 6 release period. As various types of Android smartphones are being launched in the market, forensic studies are being conducted to test data acquisition and analysis. However, since the application of new Android security technologies, it has become more difficult to acquire data using existing forensic methods. In order to address this problem, we propose a new acquisition method based on analyzing the firmware update protocols of Android smartphones. A physical acquisition of Android smartphones can be achieved using the flash memory read command by reverse engineering the firmware update protocol in the bootloader. Our experimental results demonstrate that the proposed method is superior to existing forensic methods in terms of the integrity guarantee, acquisition speed, and physical dump with screen-locked smartphones (USB debugging disabled). © 2015 The Authors.

Loading Affiliated Institute of ETRI collaborators
Loading Affiliated Institute of ETRI collaborators