AfaSci Research Laboratories

Redwood City, CA, United States

AfaSci Research Laboratories

Redwood City, CA, United States

Time filter

Source Type

PubMed | Indiana University, Jilin University, AfaSci Research Laboratories and Spinal USA
Type: Journal Article | Journal: Neural regeneration research | Year: 2016

Traumatic brain injury often causes a variety of behavioral and emotional impairments that can develop into chronic disorders. Therefore, there is a need to shift towards identifying early symptoms that can aid in the prediction of traumatic brain injury outcomes and behavioral endpoints in patients with traumatic brain injury after early interventions. In this study, we used the SmartCage system, an automated quantitative approach to assess behavior alterations in mice during an early phase of traumatic brain injury in their home cages. Female C57BL/6 adult mice were subjected to moderate controlled cortical impact (CCI) injury. The mice then received a battery of behavioral assessments including neurological score, locomotor activity, sleep/wake states, and anxiety-like behaviors on days 1, 2, and 7 after CCI. Histological analysis was performed on day 7 after the last assessment. Spontaneous activities on days 1 and 2 after injury were significantly decreased in the CCI group. The average percentage of sleep time spent in both dark and light cycles were significantly higher in the CCI group than in the sham group. For anxiety-like behaviors, the time spent in a light compartment and the number of transitions between the dark/light compartments were all significantly reduced in the CCI group than in the sham group. In addition, the mice suffering from CCI exhibited a preference of staying in the dark compartment of a dark/light cage. The CCI mice showed reduced neurological score and histological abnormalities, which are well correlated to the automated behavioral assessments. Our findings demonstrate that the automated SmartCage system provides sensitive and objective measures for early behavior changes in mice following traumatic brain injury.


Yang L.,AfaSci Research Laboratories | Zou B.,AfaSci Research Laboratories | Xiong X.,Stanford University | Pascual C.,AfaSci Research Laboratories | And 6 more authors.
Annals of Internal Medicine | Year: 2013

Hypocretin/orexin (Hcrt)-producing neurons in the lateral hypothalamus project throughout the brain, including to the hippocampus, where Hcrt receptors are widely expressed. Hcrt neurons activate these targets to orchestrate global arousal state, wake-sleep architecture, energy homeostasis, stress adaptation, and reward behaviors. Recently, Hcrt has been implicated in cognitive functions and social interaction. In the present study, we tested the hypothesis that Hcrt neurons are critical to social interaction, particularly social memory, using neurobehavioral assessment and electrophysiological approaches. The validated "two-enclosure homecage test" devices and procedure were used to test sociability, preference for social novelty (social novelty), and recognition memory. Aconventional direct contact social test was conducted to corroborate the findings. We found that adult orexin/ataxin-3-transgenic (AT) mice, in which Hcrt neurons degenerate by 3 months of age, displayed normal sociability and social novelty with respect to their wild-type littermates. However, AT mice displayed deficits in long-term social memory. Nasal administration of exogenous Hcrt-1 restored social memory to an extent in AT mice. Hippocampal slices taken from AT mice exhibited decreases in degree of paired-pulse facilitation and magnitude of long-term potentiation, despite displaying normal basal synaptic neurotransmission in the CA1 area compared to wild-type hippocampal slices. AT hippocampi had lower levels of phosphorylated cAMP response element-binding protein (pCREB), an activity-dependent transcription factor important for synaptic plasticity and long-term memory storage. Our studies demonstrate that Hcrt neurons play an important role in the consolidation of social recognition memory, at least in part through enhancements of hippocampal synaptic plasticity and cAMP response element-binding protein phosphorylation. ©2013 the authors.


Xie X.S.,AfaSci Research Laboratories | Xie X.S.,Stanford University
Vitamins and Hormones | Year: 2015

The neuropeptide nociceptin/orphanin FQ (N/OFQ), acting on its receptors (NOP), modulates a variety of biological functions and neurobehavior including nociception, stress responses, water and food-intake, locomotor activity, and spatial attention. N/OFQ is conventionally regarded as an "antiopiate" peptide in the brain because central administration of N/OFQ attenuates stress-induced analgesia (SIA) and produces anxiolytic effects. However, naloxone-irreversible SIA and anxiolytic action are unlikely to be mediated by the opiate system.Both N/OFQ and NOP receptors are expressed most abundantly in the hypothalamus, where two other neuropeptides, the hypocretins/orexins (Hcrts), are exclusively synthesized in the lateral hypothalamic area. N/OFQ and Hcrt regulate most cellular physiological responses in opposite directions (e.g., ion channel modulation and second messenger coupling), and produce differential modulations for almost all neurobehavior assessed, including sleep/wake, locomotion, and rewarding behaviors. This chapter focuses on recent studies that provide evidence at a neuroanatomical level showing that a local neuronal circuit linking N/OFQ to Hcrt neurons exists. Functionally, N/OFQ depresses Hcrt neuronal activity at the cellular level, and modulates stress responses, especially SIA and anxiety-related behavior in the whole organism. N/OFQ exerts its attenuation of SIA and anxiolytic action on fear-induced anxiety through direct modulation of Hcrt neuronal activity. The information obtained from these studies has provided insights into how interaction between the Hcrt and N/OFQ systems positively and negatively modulates the complex and integrated stress responses. © 2015 Elsevier Inc.


Lu J.,Kansas State University | Aguilar A.,Kansas State University | Zou B.,AfaSci Research Laboratories | Bao W.,Kansas State University | And 6 more authors.
Bioorganic and Medicinal Chemistry | Year: 2015

A class of tetracyclic terpenes was synthesized and evaluated for antagonistic activity of endothelin-1 (ET-1) induced vasoconstriction and inhibitory activity of voltage-activated Ca2+ channels. Three repeated Robinson annulation reactions were utilized to construct the tetracyclic molecules. A stereoselective reductive Robinson annulation was discovered for the formation of optically pure tricyclic terpenes. Stereoselective addition of cyanide to the hindered α-face of tetracyclic enone (-)-18 was found and subsequent transformation into the aldehyde function was affected by the formation of bicyclic hemiiminal (-)-4. Six selected synthetic tetracyclic terpenes show inhibitory activities in ET-1 induced vasoconstriction in the gerbil spiral modiolar artery with putative affinity constants ranging between 93 and 319nM. Moreover, one compound, (-)-3, was evaluated further and found to inhibit voltage-activated Ca2+ currents but not to affect Na+ or K+ currents in dorsal root ganglion cells under similar concentrations. These observations imply a dual mechanism of action. In conclusion, tetracyclic terpenes represent a new class of hit molecules for the discovery of new drugs for the treatment of pulmonary hypertension and vascular related diseases. © 2015 Elsevier Ltd.


PubMed | Stanford University, AfaSci Research Laboratories and Harvard University
Type: | Journal: ACS nano | Year: 2016

Neuropathic pain caused by nerve injury is debilitating and difficult to treat. Current systemic pharmacological therapeutics for neuropathic pain produce limited pain relief and have undesirable side effects, while current local anesthetics tend to nonspecifically block both sensory and motor functions. Calcitonin gene related peptide (CGRP), a neuropeptide released from sensory nerve endings, appears to play a significant role in chronic neuropathic pain. In this study, an analgesic microneedle (AMN) patch was developed using dissolvable microneedles to transdermally deliver selective CGRP antagonist peptide in a painless manner for the treatment of localized neuropathic pain. Local analgesic effects were evaluated in rats by testing behavioral pain sensitivity in response to thermal and mechanical stimuli using neuropathic pain models such as spared-nerve injury and diabetic neuropathy pain, as well as neurogenic inflammatory pain model induced by ultraviolet B (UVB) radiation. Unlike several conventional therapies, the AMN patches produced effective analgesia on neuropathic pain without disturbing the normal nociception and motor function of the rat, resulting from the high specificity of the delivered peptide against CGRP receptors. The AMN patches did not cause skin irritation or systemic side effects. These results demonstrate that dissolvable microneedle patches delivering CGRP antagonist peptide provide an effective, safe, and simple approach to mitigate neuropathic pain with significant advantages over current treatments.


PubMed | AfaSci Research Laboratories
Type: Journal Article | Journal: Stroke | Year: 2013

Brain ischemia causes immediate and delayed cell death that is exacerbated by inflammation. Recent studies show that hypocretin-1/orexin-A (Hcrt-1) reduces ischemic brain injury, and Hcrt-positive neurons modulate infection-induced inflammation. Here, we tested the hypothesis that Hcrt plays a protective role against ischemia by modulating inflammation.Orexin/ataxin-3 (AT) mice, a transgenic strain in which Hcrt-producing neurons degenerate in early adulthood, and wild-type mice were subjected to transient middle cerebral artery occlusion (MCAO). Infarct volume, neurological score, and spontaneous home cage activity were assessed. Inflammation was measured using immunohistochemistry, ELISA, and assessment of cytokine mRNA levels.Infarct volumes 24 and 48 hours after MCAO were significantly larger, neurological score was worse, and spontaneous activity decreased in AT compared with wild-type mice. Macrophage/microglial infiltration and myeloperoxidase-positive cells were higher in AT compared with wild-type mice. Pre-MCAO intracerebroventricular injection of Hcrt-1 significantly reduced infarct volume and macrophage/microglial infiltration in both genotypes and improved neurological score in AT mice. Post-MCAO treatment decreased infarct size in both wild-type and AT mice, but had no effect on neurological score in either genotype. Microglia express the Hcrt-1 receptor after MCAO. Tumor necrosis factor- production by lipopolysaccharide-stimulated microglial BV2 cells was significantly reduced by Hcrt-1 pretreatment. Sham AT mice exhibit increased brain tumor necrosis factor- and interleukin-6 mRNA, suggesting chronic inflammation.Loss of Hcrt neurons in AT mice resulted in worsened stroke outcomes, which were reversed by administration of exogenous Hcrt-1. The mechanism underlying Hcrt-mediated neuroprotection includes attenuation of inflammatory responses after ischemic insult.


PubMed | AfaSci Research Laboratories
Type: Journal Article | Journal: The Journal of neuroscience : the official journal of the Society for Neuroscience | Year: 2013

Hypocretin/orexin (Hcrt)-producing neurons in the lateral hypothalamus project throughout the brain, including to the hippocampus, where Hcrt receptors are widely expressed. Hcrt neurons activate these targets to orchestrate global arousal state, wake-sleep architecture, energy homeostasis, stress adaptation, and reward behaviors. Recently, Hcrt has been implicated in cognitive functions and social interaction. In the present study, we tested the hypothesis that Hcrt neurons are critical to social interaction, particularly social memory, using neurobehavioral assessment and electrophysiological approaches. The validated two-enclosure homecage test devices and procedure were used to test sociability, preference for social novelty (social novelty), and recognition memory. A conventional direct contact social test was conducted to corroborate the findings. We found that adult orexin/ataxin-3-transgenic (AT) mice, in which Hcrt neurons degenerate by 3 months of age, displayed normal sociability and social novelty with respect to their wild-type littermates. However, AT mice displayed deficits in long-term social memory. Nasal administration of exogenous Hcrt-1 restored social memory to an extent in AT mice. Hippocampal slices taken from AT mice exhibited decreases in degree of paired-pulse facilitation and magnitude of long-term potentiation, despite displaying normal basal synaptic neurotransmission in the CA1 area compared to wild-type hippocampal slices. AT hippocampi had lower levels of phosphorylated cAMP response element-binding protein (pCREB), an activity-dependent transcription factor important for synaptic plasticity and long-term memory storage. Our studies demonstrate that Hcrt neurons play an important role in the consolidation of social recognition memory, at least in part through enhancements of hippocampal synaptic plasticity and cAMP response element-binding protein phosphorylation.

Loading AfaSci Research Laboratories collaborators
Loading AfaSci Research Laboratories collaborators