Time filter

Source Type

Zoweil H.,Advanced Technology and New Materials Research Institute
Journal of Modern Optics | Year: 2015

A novel all-optical flip-flop based on a chirped nonlinear distributed feedback laser structure is proposed. The flip-flop does not require a holding beam. The optical gain is provided by a current injection into an active layer. The nonlinear wave-guiding layer consists of a chirped phase shifted grating accompanied with a negative nonlinear refractive index coefficient that increases in magnitude along the wave-guide. In the OFF state, the chirped grating does not provide the required optical feedback to start lasing. An optical pulse switches the device ON by reducing the chirp due to the negative nonlinear refractive index coefficient. The reduced chirp grating provides enough feedback to sustain a laser mode. The device is switched OFF by cross gain modulation. GPGPU computing allows for long simulation time of multiple SET-RESET operations. The ON/OFF transitions delays are in nanoseconds time scale. © 2015 Taylor & Francis. Source

Zoweil H.,Advanced Technology and New Materials Research Institute
Applied Optics | Year: 2010

A new, improved design of an all-optical flip flop is proposed. The waveguiding layer of the device consists of a phase-shifted nonlinear grating. The grating layers of a high refractive index have a negative nonlinear coefficient. A phase-shift section exists at the middle of the waveguiding layer. The optical gain is provided by current injection into an active layer. Nonlinearity in the waveguiding layer is achieved by direct absorption at the edge of the absorption band (Urbach tail). In the "OFF" state, the waveguiding layer forms a weak grating with an optical feedback below the laser threshold. In the "ON" state, the device functions as a distributed feedback (DFB) laser due to an induced strong grating in the nonlinear waveguiding layer. The improvements of the device performance by reducing the set pulse energy and accelerating the switch-off process are discussed. Field simulations in the time domain were performed. © 2010 Optical Society of America. Source

Nady N.,Advanced Technology and New Materials Research Institute
Membranes | Year: 2016

A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)—is presented. © 2016 by the author; licensee MDPI, Basel, Switzerland. Source

Wang Y.,Fudan University | Tang J.,Fudan University | Peng Z.,Fudan University | Jia D.,Fudan University | And 5 more authors.
Nano Letters | Year: 2014

We report the development of a multifunctional, solar-powered photoelectrochemical (PEC)-pseudocapacitive-sensing material system for simultaneous solar energy conversion, electrochemical energy storage, and chemical detection. The TiO2 nanowire/NiO nanoflakes and the Si nanowire/Pt nanoparticle composites are used as photoanodes and photocathodes, respectively. A stable open-circuit voltage of ∼0.45 V and a high pseudocapacitance of up to ∼455 F g-1 are obtained, which also exhibit a repeating charging-discharging capability. The PEC-pseudocapacitive device is fully solar powered, without the need of any external power supply. Moreover, this TiO2 nanowire/NiO nanoflake composite photoanode exhibits excellent glucose sensitivity and selectivity. Under the sun light illumination, the PEC photocurrent shows a sensitive increase upon different glucose additions. Meanwhile in the dark, the open-circuit voltage of the charged pseudocapacitor also exhibits a corresponding signal over glucose analyte, thus serving as a full solar-powered energy conversion-storage- utilization system. © 2014 American Chemical Society. Source

El-Fawal G.,Advanced Technology and New Materials Research Institute
Journal of Food Science and Technology | Year: 2014

Carrageenan films have been formulated as a packaging material. Films plasticized with glycerol were loaded with citric acid (1, 0.75, 0.5, 0.25 and 0.1 %) for enhanced antimicrobial effects. Blank and citric acid loaded films were characterized by mechanical properties, scanning electron microscopy and contact angle. In addition, swelling and antibacterial studies were conducted to further characterize the films. Both blank and citric acid loaded films showed different morphology, high elasticity and acceptable tensile (mechanical) properties. These citric acid loaded films produced higher zones of inhibition against Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli and Dickeya chrysanthemi strains compared to blank film. © 2014, Association of Food Scientists & Technologists (India). Source

Discover hidden collaborations