Advanced Technologies and Regenerative Medicine LLC

Somerville, NJ, United States

Advanced Technologies and Regenerative Medicine LLC

Somerville, NJ, United States

Time filter

Source Type

Patent
Advanced Technologies and Regenerative Medicine LLC | Date: 2012-06-08

Provided are methods for sterilizing a material comprising a biologically-active agent comprising irradiating said material with ionizing radiation at a dose of about 5 kGy to about 25 kGy while maintaining said material in an atmosphere comprising at least 95% by volume inert gas and at a temperature of about 4 C. or lower. Also provided are sterilized materials comprising a biologically-active agent, wherein said materials exhibit substantially the same amount of biological activity as a non-sterilized control.


Patent
Advanced Technologies and Regenerative Medicine LLC | Date: 2011-03-10

We have disclosed affinity peptides toward BMP-2. More specifically we have disclosed an affinity biomatrix where the affinity peptide is covalently attached to a biocompatible, biodegradable polymer. The affinity biomatrix is useful in preparing controlled release devices for BMP-2.


Patent
Advanced Technologies and Regenerative Medicine LLC | Date: 2012-05-25

This application invention discloses bioartificial proximal tubule device, constructed by preparing a decellularized biological matrix, seeding the biological matrix with mammalian kidney-derived cells and optionally mammalian endothelial cells. The device may then be cultured statically or matured using bioreactor culture to allow differentiation of the kidney cells into functioning proximal tubule cells. The device is capable of carrying out proximal tubule functions. The application also describes various methods of making the proximal tubule devices. The application also further describes methods of use of bioartificial proximal tubule devices for e.g. in vitro studies of tubule cell transport, toxicity effects of various compounds or pharmaceutical compound screening.


Patent
Advanced Technologies and Regenerative Medicine LLC | Date: 2012-12-20

The invention relates to methods for detecting allogeneic therapeutic cells (such as human umbilical cord tissue-derived cells (hUTC)) in blood. The methods includes the steps of identifying one or more one or more markers positive for allogeneic therapeutic cells (e.g. hUTC) and one or more markers positive for human peripheral blood mononuclear cells (PBMC); providing a blood sample from a patient that has been treated with allogeneic therapeutic cells (e.g. hUTC), analyzing the sample using an assay method to detect one or more markers positive for PBMC and one or more markers positive for allogeneic therapeutic cells (e.g. hUTC); and distinguishing between the PBMC and one or more markers positive for allogeneic therapeutic cells (e.g. hUTC). In one embodiment, the cells are hUTC and the markers positive of hUTC include CD10 and/or CD13 and the one or more markers positive for PBMC includes CD45.


Patent
Advanced Technologies and Regenerative Medicine LLC | Date: 2012-05-14

This invention encompasses methods, pharmaceutical compositions, and kits for modulating (e.g. reducing) the production of pro-inflammatory mediators involved in the pathology of a lung disease, disorder, and/or injury in a patient having the lung disease, disorder, and/or injury. The invention also encompasses methods, pharmaceutical compositions, and kits for inhibiting the production of pro-inflammatory mediators involved in the pathology of a lung disease, disorder, and/or injury in a patient having the lung disease, disorder, and/or injury. In one embodiment, the umbilical cord tissue-derived cells are isolated from human umbilical cord tissue substantially free of blood, are capable of self-renewal and expansion in culture, lack the production of CD117 or CD45, and do not express hTERT or telomerase.


Patent
Advanced Technologies and Regenerative Medicine LLC | Date: 2012-09-06

Cells derived from postpartum umbilicus and placenta are disclosed. Pharmaceutical compositions, devices and methods for the regeneration or repair of neural tissue using the postpartum-derived cells are also disclosed.


Patent
Advanced Technologies and Regenerative Medicine LLC | Date: 2012-05-17

We have disclosed affinity peptides toward infliximab. More specifically we have disclosed an affinity biomatrix where the affinity peptide is covalently attached to a biocompatible, biodegradable polymer. The affinity biomatrix is useful in preparing controlled release devices for infliximab.


Patent
Advanced Technologies and Regenerative Medicine LLC | Date: 2014-04-14

Provided are therapeutic implants comprising renal tissue encapsulated within a polymer bead. Also disclosed are methods for treating a disease state in a subject comprising implanting within said subject a therapeutic implant comprising renal tissue encapsulated within a polymer bead. Also provided are methods for making a therapeutic implant comprising: providing renal tissue; mixing the renal tissue with a solution comprising a polymer, thereby forming a tissue-polymer suspension; extruding the tissue-polymer suspension into an bead-forming solution, thereby forming a therapeutic implant comprising beads of said polymer within which the renal tissue is encapsulated.


Patent
Advanced Technologies and Regenerative Medicine LLC | Date: 2012-11-08

An isolated mammalian internal mammary artery-derived cell is disclosed. Furthermore, methods of isolating the mammalian internal mammary artery-derived cell are disclosed. The cell is useful in tissue engineering technologies, specifically in vascular tissue engineering.


Patent
Advanced Technologies and Regenerative Medicine LLC | Date: 2014-05-16

Provided are therapeutic implants comprising renal tissue encapsulated within a polymer bead. Also disclosed are methods for treating a disease state in a subject comprising implanting within said subject a therapeutic implant comprising renal tissue encapsulated within a polymer bead. Also provided are methods for making a therapeutic implant comprising: providing renal tissue; mixing the renal tissue with a solution comprising a polymer, thereby forming a tissue-polymer suspension; extruding the tissue-polymer suspension into an bead-forming solution, thereby forming a therapeutic implant comprising beads of said polymer within which the renal tissue is encapsulated.

Loading Advanced Technologies and Regenerative Medicine LLC collaborators
Loading Advanced Technologies and Regenerative Medicine LLC collaborators