Time filter

Source Type

Kwon M.J.,Kyungpook National University | Shin Y.K.,Seoul National University | Shin Y.K.,Advanced Institutes of Convergence Technology
International Journal of Molecular Sciences | Year: 2013

Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer. © 2013 by the authors; licensee MDPI, Basel, Switzerland. Source

Jang B.,Korea Advanced Institute of Science and Technology | Park M.,Seoul National University | Chae O.B.,Seoul National University | Park S.,Seoul National University | And 6 more authors.
Journal of the American Chemical Society | Year: 2012

Extensive applications of rechargeable lithium-ion batteries (LIBs) to various portable electronic devices and hybrid electric vehicles result in the increasing demand for the development of electrode materials with improved electrochemical performance including high energy, power density, and excellent cyclability, while maintaining low production cost. Here, we present a direct synthesis of ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. Uniform-sized ferrite nanocrystals and carbon materials were synthesized simultaneously through a single heating procedure using metal-oleate complex as the precursors for both ferrite and carbon. 2-D nanostructures were obtained by using sodium sulfate salt powder as a sacrificial template. The 2-D ferrite/carbon nanocomposites exhibited excellent cycling stability and rate performance derived from 2-D nanostructural characteristics. The synthetic procedure is simple, inexpensive, and scalable for mass production, and the highly ordered 2-D structure of these nanocomposites has great potential for many future applications. © 2012 American Chemical Society. Source

Kwon M.J.,Advanced Institutes of Convergence Technology | Shin Y.K.,Seoul National University
International Journal of Molecular Sciences | Year: 2011

The involvement of epigenetic aberrations in the development and progression of tumors is now well established. However, most studies have focused on the epigenetic inactivation of tumor suppressor genes during tumorigenesis and little is known about the epigenetic activation of cancer-associated genes, except for the DNA hypomethylation of some genes. Recently, we reported that the overexpression of cancer-promoting genes in ovarian cancer is associated with the loss of repressive histone modifications. This discovery suggested that epigenetic derepression may contribute to ovarian tumorigenesis by constituting a possible mechanism for the overexpression of oncogenes or cancer-promoting genes in tumors. The emerging importance of epigenetic aberrations in tumor initiation and in the regulation of cancer-initiating cells, suggests that epigenetically regulated genes may be promising therapeutic targets and biomarkers. Given that the current challenges in ovarian cancer include the identification of biomarkers for early cancer detection and the discovery of novel therapeutic targets for patients with recurrent malignancies undergoing chemotherapy, understanding the epigenetic changes that occur in ovarian cancer is crucial. This review looks at epigenetic mechanisms involved in the regulation of cancer-associated genes, including the contribution of epigenetic derepression to the activation of cancer-associated genes in ovarian cancer. In addition, possible epigenetic therapies targeting epigenetically dysregulated genes are discussed. A better understanding of the epigenetic changes in ovarian cancer will contribute to the improvement of patient outcomes. © 2011 by the authors; licensee MDPI, Basel, Switzerland. Source

Advanced Institutes Of Convergence Technology | Date: 2013-04-08

Disclosed is a transmission apparatus comprising: a sun gear connected to the input terminal; a plurality of first planetary gears engaging with an outer surface of the sun gear; a second planetary gear which forms a concentric circle with each first planetary gear, and which is integrally formed with the first planetary gears; a first ring gear engaging with outer surfaces of the first planetary gears and connected to the output terminal; a second ring gear engaging with an outer surface of the second planetary gear; a cage for supporting rotary shafts of the first and second planetary gears such that the first and second planetary gears can revolve about the sun gear; and a brake member.

Yeungnam University and Advanced Institutes Of Convergence Technology | Date: 2012-12-13

There is provided a Database method for a B+ tree based on a PRAM. The database method is characterized of dividing each node into area

Discover hidden collaborations