Time filter

Source Type

Ray P.,Advanced Center for Treatment
Current Pharmaceutical Biotechnology | Year: 2011

Development and marketing of new drugs require stringent validation that are expensive and time consuming. Non-invasive multimodality molecular imaging using reporter genes holds great potential to expedite these processes at reduced cost. New generations of smarter molecular imaging strategies such as Split reporter, Bioluminescence resonance energy transfer, Multimodality fusion reporter technologies will further assist to streamline and shorten the drug discovery and developmental process. This review illustrates the importance and potential of molecular imaging using multimodality reporter genes in drug development at preclinical phases. © 2011 Bentham Science Publishers Ltd. Source

Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases. Apomyoglobin emerges as a new model substrate to further explore the role of ATPases and protein structure in proteasomal degradation. Source

Dhar S.,Advanced Center for Treatment
Cancer immunity : a journal of the Academy of Cancer Immunology | Year: 2010

Aminobisphosphonates are drugs administered for the treatment of bone resorption. They can indirectly activate peripheral γδ T cells and render tumor cells susceptible to lysis by Vγ9Vδ2 T cells. We have investigated the molecules involved in conjugate formation and killing of aminobisphosphonate-treated MCF-7 breast tumor cells by Vγ9Vδ2 T cells. Lysis of aminobisphosphonate (Pamidronate and Zoledronate)-treated MCF-7 tumor cells by Vγ9Vδ2 T cells was assessed by chromium release assays and time-lapse video microscopy. MCF-7 breast cancer cells were chosen as aminobisphosphonates are employed to alleviate bone resorption in this malignancy. Cell cycle profile and expression of MICA, ICAM-I and FasL on aminobisphosphonate-sensitized MCF-7 breast tumor cells was confirmed by flow cytometry. Involvement of γδ TCR and NKG2D in mediating cytotoxicity of aminobisphosphonate-treated MCF-7 breast tumor cells by Vγ9Vδ2 T cells was assessed using blocking antibodies in chromium release assays. MCF-7 tumor cells pretreated with Pamidronate and Zoledronate were efficiently lysed by Vγ9Vδ2 T cells. Pamidronate and Zoledronate treatment of MCF-7 cells induced S phase arrest and did not alter expression of MICA, ICAM-I and FasL. Blocking γδ TCR and NKG2D on Vγ9Vδ2 T cells inhibited lysis of Pamidronate and Zoledronate-treated MCF-7 cells. Inhibiting the perforin-granzyme pathway in Vγ9Vδ2 T cells using concanamycin A reduced their ability to lyse aminobisphosphonate-treated MCF-7 cells. Vγ9Vδ2 T cells form strong conjugates with aminobisphosphonate-treated MCF-7 breast tumor cells. γδ TCR, NKG2D and perforin-granzyme pathway are involved in the lysis of MCF-7 breast tumor cells treated with aminobisphosphonates by Vγ9Vδ2 T cells. Source

Advanced Center For Treatment | Date: 2011-01-11

A process for generating transgenic animals using recombinant lentiviruses. The process comprises injecting recombinant lentiviruses into the interstituim of the testis of a male to produce mature spermatozoa within a few days. The male with transgene expressing lentivirus is mated with a female, forming a progeny carrying the transgene.

Gogoi D.,Advanced Center for Treatment | Chiplunkar S.V.,Advanced Center for Treatment
Indian Journal of Medical Research | Year: 2013

γδ T lymphocytes represent a minor subset of peripheral blood in humans (<10%). γδ T cells expressing Vγ9Vδ2 T cell receptor recognise the endogenous pool of isopentenyl pyrophosphate (IPP) that is overproduced in cancer cells as a result of dysregulated mevalonate pathway. Aminobisphosphonates increase the endogenous pool of IPP in cells by blocking the enzyme farnesyl pyrophosphate synthase (FPPS) of the mevalonate pathway. Activated γδ T cells release copious amounts of interferon (IFN)-γ and tumour necrosis factor (TNF)-α and exhibit potent anti-tumour activity. Combination of γδ T cells with therapeutic monoclonal antibodies can efficiently mediate antibody dependent cellular cytotoxicity against tumours. These features makes γδ T cells attractive mediator of cancer immunotherapy. We review here, the basic properties and importance of γδ T cells in tumour immunity, and highlight the key advances in anti-tumour effector functions of γδ T cells achieved over the last few years and also summarize the results of the clinical trials that have been done till date. Future immunotherapeutic approach utilizing γδ T cells holds considerable promise for treatment of different types of cancer. Source

Discover hidden collaborations