Time filter

Source Type

Houston, TX, United States

Jensen E.A.,ACS Consulting | Hick P.P.,University of California at San Diego | Bisi M.M.,Institute of Mathematical and Physical science | Bisi M.M.,University of California at San Diego | And 3 more authors.
Solar Physics

We present the results from modeling the coronal mass ejection (CME) properties that have an effect on the Faraday rotation (FR) signatures that may be measured with an imaging radio antenna array such as the Murchison Widefield Array (MWA). These include the magnetic flux rope orientation, handedness, magnetic-field magnitude, velocity, radius, expansion rate, electron density, and the presence of a shock/sheath region. We find that simultaneous multiple radio source observations (FR imaging) can be used to uniquely determine the orientation of the magnetic field in a CME, increase the advance warning time on the geoeffectiveness of a CME by an order of magnitude from the warning time possible from in-situ observations at L1, and investigate the extent and structure of the shock/sheath region at the leading edge of fast CMEs. The magnetic field of the heliosphere is largely "invisible" with only a fraction of the interplanetary magnetic-field lines convecting past the Earth; remote sensing the heliospheric magnetic field through FR imaging from the MWA will advance solar physics investigations into CME evolution and dynamics. © 2010 The Author(s). Source

Bisi M.M.,University of California at San Diego | Bisi M.M.,Aberystwyth University | Breen A.R.,Aberystwyth University | Jackson B.V.,University of California at San Diego | And 27 more authors.
Solar Physics

We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth's magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching -263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation. © 2010 The Author(s). Source

Webb D.F.,Boston College | Mostl C.,University of Graz | Mostl C.,University of California at Berkeley | Jackson B.V.,University of California at San Diego | And 18 more authors.
Solar Physics

It is usually difficult to gain a consistent global understanding of a coronal mass ejection (CME) eruption and its propagation when only near-Sun imagery and the local measurements derived from single-spacecraft observations are available. Three-dimensional (3D) density reconstructions based on heliospheric imaging allow us to "fill in" the temporal and spatial gaps between the near-Sun and in situ data to provide a truly global picture of the propagation and interactions of the CME as it moves through the inner heliosphere. In recent years the heliospheric propagation of dense structures has been observed and measured by the heliospheric imagers of the Solar Mass Ejection Imager (SMEI) and on the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. We describe the use of several 3D reconstruction techniques based on these heliospheric imaging data sets to distinguish and track the propagation of multiple CMEs in the inner heliosphere during the very active period of solar activity in late July - early August 2010. We employ 3D reconstruction techniques used at the University of California, San Diego (UCSD) based on a kinematic solar wind model, and also the empirical Tappin-Howard model. We compare our results with those from other studies of this active period, in particular the heliospheric simulations made with the ENLIL model by Odstrcil et al. (J. Geophys. Res., 2013) and the in situ results from multiple spacecraft provided by Möstl et al. (Astrophys. J. 758, 10 - 28, 2012). We find that the SMEI results in particular provide an overall context for the multiple-density flows associated with these CMEs. For the first time we are able to intercompare the 3D reconstructed densities with the timing and magnitude of in situ density structures at five spacecraft spread over 150° in ecliptic longitude and from 0. 4 to 1 AU in radial distance. We also model the magnetic flux-rope structures at three spacecraft using both force-free and non-force-free modelling, and compare their timing and spatial structure with the reconstructed density flows. © 2013 Springer Science+Business Media Dordrecht. Source

Mostl C.,University of California at Berkeley | Mostl C.,University of Graz | Mostl C.,Austrian Academy of Sciences | Farrugia C.J.,University of New Hampshire | And 25 more authors.
Astrophysical Journal

We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120° in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38AU) to Venus Express (VEX, at 0.72AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index ( - 100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs. © © 2012. The American Astronomical Society. All rights reserved.. Source

Discover hidden collaborations