Time filter

Source Type

A Graz, Austria

Agency: Cordis | Branch: H2020 | Program: IA | Phase: BIOTEC-3-2014 | Award Amount: 11.37M | Year: 2015

Oxygen functionalities are key functional groups in many of todays chemicals and materials. The efficient introduction of oxygen-functionalities into raw materials are key chemical transformations in bulk and fine chemicals. Innovative bio-catalytic oxidation routes using molecular oxygen (from air) under benign and mild (pH) conditions such as ambient temperature and pressure can greatly improve the sustainability and economics of processes, but were so far mainly been applied in the pharma segments. In this segment, the enzyme-catalyzed step often represents the highest added value and the high price of the end-product (> 1000/kg) justifies less than optimal enzyme production and limitations in its catalytic efficiency. In order to achieve the widening of industrial application of enzymatic bio-oxidation processes to also larger volume but lower price chemical markets, ROBOX will demonstrate the techno-economic viability of bio-transformations of four types of robust oxidative enzymes: P450 monooxygenases (P450s), Baeyer-Villiger MonoOxygenase (BVMOs), Alcohol DeHydrogenase (ADH) and Alcohol OXidase (AOX) for which target reactions have already been validated on lab-scale in pharma, nutrition, fine & specialty chemicals and materials applications. ROBOX will demonstrate 11 target reactions on large scale for these markets in order to prepare them for scale up to commercial-scale plants. ROBOX is industry-driven with 2 major industrial players and 6 SMEs. It will assess the potential of technologies applied to become platform technologies technologies (multi-parameter screening systems, computational methodologies, plug bug expression systems) for broad replication throughout the chemical industry. The markets addressed within ROBOX represent a joint volume of over 6.000 ktons/year. The introduction of bio-oxidation processes is expected to bring substantial reductions in cost (up to -50%), energy use (-60%), chemicals (-16%) and GHG-emissions (-50%).

ACIB GmbH | Date: 2014-07-07

The invention refers to a library of bidirectional expression cassettes or expression vectors comprising a repertoire of bidirectional promoter sequences, each expression cassette comprising a promoter sequence operably linked to a first gene in one direction, and operably linked to an oppositely oriented second gene in the other direction which is different from the first gene, and bidirectional

Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 4.04M | Year: 2015

Chinese hamster (CHO) ovary cells are the production host for a \50 billion /yr biopharmaceuticals market. Current CHO production platforms dates to 1980 and are based primarily on media and process optimisation with little consideration to the optimization of the cellular machinery. Fortunately, with the recent sequencing of the CHO genome, an opportunity has opened to significantly advance the CHO platform. The benefit will be advanced production flexibility and a lower production cost. This ITN graduate training programme - eCHO Systems - will blend conventional molecular, cellular, and synthetic biology with genome scale systems biology training in omics data acquisition, biological network modeling, and genome engineering in three interdisciplinary topics: 1) Acquisition of large scale omics data sets and their incorporation into genome-scale mathematical models 2) Development of genome engineering tools, enabling synthetic biology 3) Application of systems and synthetic biology and genome engineering to improve performance of CHO producers The training projects are supported by 15 industrial participants, which will participate in the research and test the results. ESR training will include intense courses focused on computational systems biology, cell biology, business and entrepreneurship. The three universities bring unique complementary skills in systems and synthetic biology, omics technologies, cytometry, and molecular cell biology which will provide depth and breadth to this training. The eCHO Systems will produce four major outputs: General knowledge to improve the productivity, quality, and efficiency of CHO platform cell lines, new systems models for CHO cells, new CHO cell line chassises generated through synthetic biology approaches, high quality education at the graduate level, and a cadre of interdisciplinary graduates poised to transform biopharmaceutical biotechnology.

The invention relates to a method for determining catalophores including the steps of creating a point cloud database for target protein structures; creating a query point cloud; and searching said database with said query to thereby identify one or more catalophores.

Simon R.C.,ACIB GmbH | Zepeck F.,Sandoz GmbH | Kroutil W.,Institute of Chemistry
Chemistry - A European Journal | Year: 2013

The regioselectivity of various enantiocomplementary ω-transaminases was evaluated for the stereoselective monoamination of designated 1,5-diketones; excellent conversions, enantio- and regioselectivities were observed. The resulting amino-ketones underwent spontaneous intramolecular ring closure to afford Δ1-piperideines, which served as precursors for the cis- and anti-piperidine scaffold as demonstrated for the synthesis of the alkaloids dihydropinidine and epi-dihydropinidine. Key to the success of accessing the trans-piperidines was a Lewis acid mediated conformational change of the Δ1-piperideines in the reduction step. Thus, all four diastereomers of 2,6-disubstituted piperidines could successfully be prepared. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Discover hidden collaborations