Acib Austrian Center of Industrial Biotechnology

Graz, Austria

Acib Austrian Center of Industrial Biotechnology

Graz, Austria

Time filter

Source Type

Rupp O.,Bielefeld University | Rupp O.,Justus Liebig University | Becker J.,Bielefeld University | Brinkrolf K.,Bielefeld University | And 7 more authors.
PLoS ONE | Year: 2014

Chinese hamster ovary (CHO) cell lines represent the most commonly used mammalian expression system for the production of therapeutic proteins. In this context, detailed knowledge of the CHO cell transcriptome might help to improve biotechnological processes conducted by specific cell lines. Nevertheless, very few assembled cDNA sequences of CHO cells were publicly released until recently, which puts a severe limitation on biotechnological research. Two extended annotation systems and web-based tools, one for browsing eukaryotic genomes (GenDBE) and one for viewing eukaryotic transcriptomes (SAMS), were established as the first step towards a publicly usable CHO cell genome/transcriptome analysis platform. This is complemented by the development of a new strategy to assemble the ca. 100 million reads, sequenced from a broad range of diverse transcripts, to a high quality CHO cell transcript set. The cDNA libraries were constructed from different CHO cell lines grown under various culture conditions and sequenced using Roche/454 and Illumina sequencing technologies in addition to sequencing reads from a previous study. Two pipelines to extend and improve the CHO cell line transcripts were established. First, de novo assemblies were carried out with the Trinity and Oases assemblers, using varying k-mer sizes. The resulting contigs were screened for potential CDS using ESTScan. Redundant contigs were filtered out using cd-hit-est. The remaining CDS contigs were re-assembled with CAP3. Second, a reference-based assembly with the TopHat/Cufflinks pipeline was performed, using the recently published draft genome sequence of CHO-K1 as reference. Additionally, the de novo contigs were mapped to the reference genome using GMAP and merged with the Cufflinks assembly using the cuffmerge software. With this approach 28,874 transcripts located on 16,492 gene loci could be assembled. Combining the results of both approaches, 65,561 transcripts were identified for CHO cell lines, which could be clustered by sequence identity into 17,598 gene clusters. © 2014 Rupp et al.


Dall'Antonia F.,European Molecular Biology Laboratory | Pavkov-Keller T.,Acib Austrian Center of Industrial Biotechnology | Pavkov-Keller T.,University of Graz | Zangger K.,University of Graz | Keller W.,University of Graz
Methods | Year: 2014

The structure determination of major allergens is a prerequisite for analyzing surface exposed areas of the allergen and for mapping conformational epitopes. These may be determined by experimental methods including crystallographic and NMR-based approaches or predicted by computational methods. In this review we summarize the existing structural information on allergens and their classification in protein fold families. The currently available allergen-antibody complexes are described and the experimentally obtained epitopes compared. Furthermore we discuss established methods for linear and conformational epitope mapping, putting special emphasis on a recently developed approach, which uses the structural similarity of proteins in combination with the experimental cross-reactivity data for epitope prediction. © 2013 The Authors.


Schroder H.,University of Graz | Schroder H.,Acib Austrian Center of Industrial Biotechnology | Strohmeier G.A.,Acib Austrian Center of Industrial Biotechnology | Leypold M.,University of Graz | And 4 more authors.
Advanced Synthesis and Catalysis | Year: 2013

The C-terminal activation of peptides as prerequisite for the formation or ligation of peptide fragments is often associated with the problem of epimerization. We report that ruthenium-catalyzed alkyne addition with (+)-2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane as ligand allows the racemization-free synthesis of peptide enol esters tolerating a wide range of functional groups. The transformation can be performed in a variety of different solvents addressing the solubility issues imposed by peptides with varying amino acid side chain patterns. We show that peptide enol esters with an amide motif in the enol moiety are excellent acyl donors for the peptide condensation with other peptide fragments in organic solvents using serine endopeptidase subtilisin A as catalyst. The reported combination of transition metal catalysis with enzymatic peptide ligations adds an important tool for the racemization-free synthesis and ligation of peptides which is compatible even with unprotected amino acid side chains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Grillitsch K.,Acib Austrian Center of Industrial Biotechnology | Connerth M.,University of Graz | Kofeler H.,Medical University of Graz | Arrey T.N.,Goethe University Frankfurt | And 5 more authors.
Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids | Year: 2011

In the yeast Saccharomyces cerevisiae as in other eukaryotes non-polar lipids are a reservoir of energy and building blocks for membrane lipid synthesis. The yeast non-polar lipids, triacylglycerols (TG) and steryl esters (SE) are stored in so-called lipid particles/droplets (LP) as biologically inert form of fatty acids and sterols. To understand LP structure and function in more detail we investigated the molecular equipment of this compartment making use of mass spectrometric analysis of lipids (TG, SE, phospholipids) and proteins. We addressed the question whether or not lipid and protein composition of LP influence each other and performed analyses of LP from cells grown on two different carbon sources, glucose and oleate. Growth of cells on oleate caused dramatic cellular changes including accumulation of TG at the expense of SE, enhanced the amount of glycerophospholipids and strongly increased the degree of unsaturation in all lipid classes. Most interestingly, oleate as a carbon source led to adaptation of the LP proteome resulting in the appearance of several novel LP proteins. Localization of these new LP proteins was confirmed by cell fractionation. Proteomes of LP variants from cells grown on glucose or oleate, respectively, were compared and are discussed with emphasis on the different groups of proteins detected through this analysis. In summary, we demonstrate flexibility of the yeast LP lipidome and proteome and the ability of LP to adapt to environmental changes. © 2011 Elsevier B.V. All rights reserved.


Tehlivets O.,University of Graz | Malanovic N.,University of Graz | Visram M.,University of Graz | Pavkov-Keller T.,Acib Austrian Center of Industrial Biotechnology | Keller W.,University of Graz
Biochimica et Biophysica Acta - Molecular Basis of Disease | Year: 2013

S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed. © 2012 Elsevier B.V.


Kudanga T.,University of Graz | Kudanga T.,Cape Peninsula University of Technology | Prasetyo E.N.,University of Graz | Sipila J.,University of Helsinki | And 3 more authors.
Journal of Biotechnology | Year: 2010

Enzymatic processes provide new perspectives for modification of lignocellulose materials. In the current study, laccase catalyzed coupling of long chain alkylamines to lignin model molecules and lignocellulose was investigated. Up to two molecules of dodecylamine (DA) and dihexylamine (DHA) were successfully coupled with lignin monomers (guaiacol, catechol and ferulic acid) while coupling onto complex lignin model compounds (syringylglycerol β-guaiacyl ether, guaiacylglycerol β-guaiacyl ether and dibenzodioxocin) yielded 1:1 coupling products. Surface analysis of beech veneers enzymatically grafted with DA showed an increase in nitrogen content of 3.18% compared to 0.71% in laccase only treated controls while the O/C ratio decreased from 0.52 to 0.46. Concomitantly the grafting of DHA or DA onto beech veneers resulted in a 53.8% and 84.2% increase in hydrophobicity, respectively when compared to simple adsorption. Therefore, laccase-mediated grafting of long chain alkylamines onto lignocellulose materials can be potentially exploited for improving their hydrophobicity. © 2010 Elsevier B.V.


Wriessnegger T.,Acib Austrian Center of Industrial Biotechnology | Augustin P.,Acib Austrian Center of Industrial Biotechnology | Engleder M.,University of Graz | Leitner E.,University of Graz | And 9 more authors.
Metabolic Engineering | Year: 2014

The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mgL-1 cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources. © 2014 International Metabolic Engineering Society.


Wriessnegger T.,Acib Austrian Center of Industrial Biotechnology | Pichler H.,Acib Austrian Center of Industrial Biotechnology | Pichler H.,Graz University of Technology
Progress in Lipid Research | Year: 2013

Terpenoids comprise various structures conferring versatile functions to eukaryotes, for example in the form of prenyl-anchors they attach proteins to membranes. The physiology of eukaryotic membranes is fine-tuned by another terpenoid class, namely sterols. Evidence is accumulating that numerous membrane proteins require specific sterol structural features for function. Moreover, sterols are intermediates in the synthesis of steroids serving as hormones in higher eukaryotes. Like steroids many compounds of the terpenoid family do not contribute to membrane architecture, but serve as signalling, protective or attractant/repellent molecules. Particularly plants have developed a plenitude of terpenoid biosynthetic routes branching off early in the sterol biosynthesis pathway and, thereby, forming one of the largest groups of naturally occurring organic compounds. Many of these aromatic and volatile molecules are interesting for industrial application ranging from foods to pharmaceuticals. Combining the fortunate situation that sterol biosynthesis is highly conserved in eukaryotes with the amenability of yeasts to genetic and metabolic engineering, basically all naturally occurring terpenoids might be produced involving yeasts. Such engineered yeasts are useful for the study of biological functions and molecular interactions of terpenoids as well as for the large-scale production of high-value compounds, which are unavailable in sufficient amounts from natural sources due to their low abundance. © 2013 Elsevier Ltd. All rights reserved.


Gruber C.C.,Acib Austrian Center of Industrial Biotechnology | Pleiss J.,University of Stuttgart
Methods in Molecular Biology | Year: 2012

Interactions of lipases with hydrophobic substrate-water interfaces are of great interest to design improved lipase variants and engineer reaction conditions. This chapter describes the necessary steps to carry out molecular dynamics simulations of Candida antarctica lipase B at tributyrin-water interface using the GROMACS simulation software. Special attention is drawn to the preparation of the protein and the substrate-water interface and to the analysis of the obtained trajectory. © 2012 Springer Science+Business Media New York.


Wiltschi B.,Acib Austrian Center of Industrial Biotechnology
Fungal Genetics and Biology | Year: 2016

Non-canonical amino acids add extraordinary chemistries to proteins when they gain access to translation. In yeast, they can be incorporated into proteins by replacing a canonical amino acid or in a site-specific manner in response to an amber stop codon. The first approach simply exploits the natural substrate tolerance of the aminoacyl-tRNA synthetases in an auxotrophic host. The latter requires the co-expression of an orthogonal aminoacyl-tRNA synthetase that is specific for the non-canonical amino acid together with an amber suppressor tRNA. This review briefly recaps the residue- and site-specific incorporation techniques for non-canonical amino acids in yeast. It describes the selection system for orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pairs and compares the different expression systems for these pairs. Numerous examples illustrate the application of non-canonical amino acids for protein engineering in yeast. The compilation includes the chemical structures of the amino acid analogs, the orthogonal pairs that were used for their incorporation and the titers of the labeled variant proteins. © 2016 Elsevier Inc.

Loading Acib Austrian Center of Industrial Biotechnology collaborators
Loading Acib Austrian Center of Industrial Biotechnology collaborators