Alcobendas, Spain
Alcobendas, Spain

Acciona, S.A. is a Spanish conglomerate group dedicated to civil engineering, construction and infrastructure.The company was founded in 1997 through the merger of Entrecanales y Tavora and Cubiertas y MZOV. The company's headquarters is in Alcobendas, Community of Madrid, Spain. The company's U.S. operations are headquartered in Chicago, Illinois, U.S.Acciona is controlled by chairman José Manuel Entrecanales and his family through Grupo Entrecanales. Wikipedia.


Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-04-2015 | Award Amount: 6.83M | Year: 2016

Environmental heating is a growing challenge for our community and problems are already experienced by millions of Europeans during the summertime and aggravated during heat waves or occupational settings. In addition to the well-known health risks related to severe heat stress, a number of studies have confirmed significant loss of productivity due to hyperthermia. Even if countries adopt the EU proposal for limiting global CO2 emissions, climate change and its associated threat to public health will continue for many decades. Thus, it is crucial to develop strategies to mitigate the detrimental health and societal effects of these environmental changes. Stakeholders such as policy makers and the private sector usually lack the technical capabilities or facilities to conduct R&D activities at the level of excellence required for such development. European research institutes have the capacity to conduct the R&D necessary to develop solutions. However, they often lack the capacity to transform these solutions into policies and assess their health, economic and social benefits. The HEAT-SHIELD project will create a sustainable inter-sector framework that will promote health as well as productivity for European citizens in the context of global warming. The project will produce a series of state-of-the-art innovative outcomes including: (i) appropriate technical and biophysical research-based solutions to be implemented when the ambient temperature poses a health threat or impairs productivity (ii) a weather-based warning system with online open access service that anticipates the events that may pose a threat to workers health; (iii) scenario-specific policies and solutions aimed at health promotion and preventing loss of productivity (iv) implementation of the formulated policies and evaluation of their health, economic and social benefits. Consequently, the HEAT-SHIELD project provides a multi-sector approach to address the serious environmental challenge.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-03-2015 | Award Amount: 26.52M | Year: 2016

Offshore wind business competitiveness is strongly related to substructures and offshore logistics. DEMOGRAVI3 addresses these areas through a very promising solution called GRAVI3. GRAVI3 is an innovative hybrid steel-concrete offshore sub-structure for transitional water depths between 35 and 60m. It will sustainably reduce the levelized cost of energy by up to 15% by combining the following vectors: - Using three concrete caissons, with water ballast, instead of more complex and costly steel solutions and anchoring systems - Using a smaller steel structure - Performing all construction and assembly onshore and towing the complete unit to the site where it is submerged with an innovative and robust method. - Preventing the use of heavy lift vessels and reducing the level of complexity and risk of offshore operations. GRAVI3 has undergone the typical technology development process and is presently at TRL5. The logical next steps is the demonstration at full scale in real operational conditions. Thus, the project fits perfectly to the addressed Call for Proposals as the project will support technology development and bring the technology close to market readiness. The proposed project will design, engineer, build, assemble, transport, install and demonstrate a full scale foundation, equipped with a 2 MW offshore wind turbine, in a consented and grid connected demonstration site. Additionally, the project will undertake further technology development for improved design and perform an in depth evaluation of the technologys future industrialization, competitiveness and bankability. The core partners are committed to bring the GRAVI3 technology to market intending to 1) form a company with the objective to commercialize the GRAVI3 technology; 2) prepare themselves to take on important segments of the industrial value chain which will be put in place to move the GRAVI3 product forward; 3) foster the use of the technology, namely in the wind farms they are developing.


Grant
Agency: European Commission | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP3-02-2016 | Award Amount: 7.29M | Year: 2016

IN2SMART represents the 1st proposal of the Shift2Rail members referred, according to MAAP, to the following Technology Demonstrators (TDs): TD3.7 Railway Information Measuring and Monitoring System (RIMMS), TD3.6 Dynamic Railway Information Management System (DRIMS) and TD3.8 Intelligent Asset Management Strategies (IAMS). These TDs will deploy an overall concept for Intelligent Asset Management based on the following three main interlinked layers: Measuring and Monitoring systems to collect data from the field related to the railway assets status: IN2SMART will develop unmanned systems for remote monitoring; track geometry, switches & crossings and signalling monitoring systems; innovative measurement of train parameters and wheel defects combined with rolling stock identifications systems. Data management, data mining and data analytics procedures to process data from the field and from other sources: IN2SMART will develop standard open interfaces to access heterogeneous maintenance-related data; analytic tools to automatic detect anomalies, discover and describe maintenance workflow processes and predict railway assets decay towards prescriptive maintenance. Degradation models and decision making tools to support maintenance strategies and execution: IN2SMART will lay the foundation of a generic framework for asset management and decision support process. This framework will specify the scope, objectives, workflow and outcomes of the decision-making process for maintenance interventions planning, and will be the enabler for the development of future decision support tools and systems. IN2SMART will also develop an optimised tamping tool and a robot platform for maintenance works. IN2SMART will complement the work of the IN2RAIL lighthouse project to reach a homogeneous TRL4/5 demonstrator. The following Grant will start from IN2SMART to reach the final Integrated Technology Demonstrators that will deploy the overall concept of Intelligent Asset Management.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SCC-03-2016 | Award Amount: 7.50M | Year: 2016

Based on a detailed mapping of urban challenges and relevant nature-based solutions (NBS), Nature4Cities aims at developing complementary and interactive modules to engage urban stakeholders in a collective-learning process about re-naturing cities, develop and circulate new business, financial and governance models for NBS projects, as well as provide tools for the impacts assessment, valorisation and follow-up of NBS projects. The different modules are: a database of generic NBS and associated environmental, economic and social performances an observatory of NBS projects best practices / case studies a set of innovative business, financial and governance models for the deployment of NBS in a range of different contexts, together with a tool to help urban stakeholders identify eligible models regarding their NBS project contexts a NBS project impact assessment toolbox providing capabilities for environmental, economic and social impacts evaluation at different stages in the project development cycle from opportunity/feasibility studies to design steps and project follow-up). This toolbox will built on a range of tools, from generic indicator-based assessment for early project stages, down to detailed modelisations of NBS behaviors. These modules that already have a proper purpose on their own, will furthermore be integrated in a NBS dissemination and assessment self-learning platform [N4C Platform] to assist NBS project developers along the entire life cycle of their projects from opportunity studies and project definition down to performance monitoring. Nature4Cities indicators, methodologies, tools and platform will be field tested in real working environments and on real nature-based solution projects and developments in selected cities in Europe, which will be partners of the project and engage their technical urban and environmental planning teams.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: SCC-01-2015 | Award Amount: 32.20M | Year: 2016

SmartEnCitys main Objective is to develop a highly adaptable and replicable systemic approach towards urban transformation into sustainable, smart and resource-efficient urban environments in Europe through the integrated planning and implementation of measures aimed at improving energy efficiency in main consuming sectors in cities, while increasing their supply of renewable energy, and demonstrate its benefits. The underlying concept of the proposal is the Smart Zero Carbon City concept, where city carbon footprint and energy demand are kept to a minimum through the use of demand control technologies that save energy and promote raised awareness; energy supply is entirely renewable and clean; and local energy resources are intelligently managed by aware citizens, as well as coordinated public and private stakeholders. This approach will be firstly defined in detail, laid out and implemented in the three Lighthouse demonstrators (Vitoria-Gasteiz in Spain, Tartu in Estonia and Sonderborg in Denmark). The three cities will develop a number of coordinated actions aimed at: Significant demand reduction of the existing residential building stock through cost-effective low energy retrofitting actions at district scale. Increase in RES share of energy supply, through extensive leveraging of local potentials. Enhance the use of clean energy in urban mobility, both for citizens and goods, by means of extensive deployment of green vehicles and infrastructure. An extensive use of ICTs is planned to achieve integration and consistency in demo planning and implementation, and to enable further benefits and secure involvement of citizens. These actions will be aligned to city-specific Integrated Urban Plans (IUPs), and the process will be replicated in two Follower cities: Lecce, (Italy), and Asenovgrad (Bulgaria) to ensure adaptability and maximize the project impact. Additionally, a Smart Cities Network will be setup to support project replication at European scale.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMP-19-2015 | Award Amount: 7.97M | Year: 2016

The main goal of the LORCENIS project is to develop long reinforced concrete for energy infrastructures with lifetime extended up to a 100% under extreme operating conditions. The concept is based on an optimal combination of novel technologies involving customized methodologies for cost-efficient operation. 4 scenarios of severe operating conditions are considered: 1. Concrete infrastructure in deep sea, arctic and subarctic zones: Offshore windmills, gravity based structures, bridge piles and harbours 2. Concrete and mortar under mechanical fatigue in offshore windmills and sea structures 3. Concrete structures in concentrated solar power plants exposed to high temperature thermal fatigue 4. Concrete cooling towers subjected to acid attack The goal will be realized through the development of multifunctional strategies integrated in concrete formulations and advanced stable bulk concretes from optimized binder technologies. A multi-scale show case will be realized towards service-life prediction of reinforced concretes in extreme environments to link several model approaches and launch innovation for new software tools. The durability of sustainable advanced reinforced concrete structures developed will be proven and validated within LORCENIS under severe operating conditions based on the TRL scale, starting from a proof of concept (TRL 3) to technology validation (TRL 5). LORCENIS is a well-balanced consortium of multidisciplinary experts from 9 universities and research institutes and 7 industries whose 2 are SMEs from 8 countries who will contribute to training by exchange of personnel and joint actions with other European projects and increase the competitiveness and sustainability of European industry by bringing innovative materials and new methods closer to the marked and permitting the establishment of energy infrastructures in areas with harsh climate and environmental conditions at acceptable costs.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: FOF-01-2016 | Award Amount: 5.95M | Year: 2016

KRAKEN will develop a disruptive hybrid manufacturing concept to equip SME and large industries with affordable All-in-one machine for the customised design, production/reparation and quality control of functional parts (made in aluminium, thermoset or both materials combined from 0,1m till 20m) through subtractive and novel additive technologies in vast working areas without floor space requirements. In KRAKEN project, new additive technologies targeting large areas using aluminium grades as well as thermoset materials will be validated at lab scale (TRL 4) and in relevant environments (TRL 5) and finally integrated and combined (Error! No se encuentra el origen de la referencia.) for the demonstration in industrial relevant environments (TRL 6). KRAKEN will collaborate to the consolidation of the Hybrid Manufacturing value chain by means of a consortium specially selected for linking research results to technological necessities in the fields of software, monitoring, automation, materials, standardization and end-users. KRAKEN machine will be devoted to the production and reparation of functional parts of any size with dimensional tolerances under 0.3 millimetres and surface roughness under Ra 0,1 m aiming to achieve 40% reduction in time and 30 % in cost and 25% increase in productivity. KRAKEN machine will be based on hybrid approach merging MEGAROB subtractive machine (working area 20x6x3 metres) together with high efficient metallic and novel non-metallic AM. After the end of the project, KRAKEN machine will be an affordable solution (1.5M estimated selling price, lower than current equipment and strategies for the production of final parts) for the customised production of large size functional parts; decreasing time (40%) and cost (30%), increasing productivity (at least 25%) and with a 90 % reduction of floor space required because it uses an ceiling installation broadly extended into the whole industry


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-03-2015 | Award Amount: 8.49M | Year: 2016

Building-integrated photovoltaics (BIPV) is currently an expansive market. Market analysts estimate a compound annual growth rate of 18,7% and a total of 5,4 GW installed worldwide between 2013 and 2019. One of the main drivers for BIPV market growth in the EU is the increasingly demanding legislation related to energy performance in buildings. The large potential for energy savings in buildings led the EU Commission to adopt the 2010/31/EU Directive on the energy performance of buildings with the objective that all new buildings are Nearly Zero Energy Buildings (NZEB) by 2020. Renewable energy technologies, and in particular the integration of photovoltaic systems in the building environment offer many possibilities to play a key role within the NZEB scenario. Despite this favorable framework for BIPV technology market uptake, initial estimations of BIPV market growth have been subsequently overestimated in the past few years. A series of demands from the stakeholders which have not been properly addressed by the BIPV value chain are the cause for this deviation. These key requirements are mainly related to the flexibility in design and aesthetics considerations, lack of tools integrating PV and building performance, demonstration of long-term reliability of the technology, compliance with legal regulations, smart interaction with the grid and cost effectiveness. Within this context: The objective of PVSITES project is to drive BIPV technology to a large market deployment by demonstrating an ambitious portfolio of building-integrated solar technologies and systems, giving a forceful, reliable answer to the market requirements identified by the industrial members of the consortium in their day-to-day activity. High impact demonstration and dissemination actions will be accomplished in terms of cost-effective renewable generation, reduction of energy demands and smart energy management.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: ICT-25-2016-2017 | Award Amount: 4.67M | Year: 2017

The proposal addresses novel concepts for introducing Robotics and Autonomous Systems in the Construction Sector where, at this moment, the presence is minor. Specifically, the Hephaestus project focuses on highly risked and critical construction tasks such as prefab wall installation. In that sense, the Hephaestus has been conceived as a solution for accomplishing multiple tasks on vertical or inclined planes of the built and outdoor environment. For that purpose, the Hephaestus is mainly based on a cable-driven robot and a modular end effector kit. This modular kit can host several tools and devices and therefore we can say it is multifunctional. Among the functionalities, the research project will achieve tasks such as 3D laser scanning of the building structure and the posterior installation of the prefab wall. But we can foresee some other performances such as the cleaning and maintenance of the curtain wall, repair of cracks and painting. The apparatus of the Hephaestus is lean, compatible with other handling systems, highly versatile and its reachability is very broad. Moreover, the controlling system would offer and easy and fast calibration. For achieving this goal, matrix based design methods will be used. It basically consists on decomposing a complex solution, such as the Hephaestus, into interdependent subsystems that can be feasible to solve. Certainly, the integration and adaptation of several technologies into the Hephaestus will be carried out with a systematic approach that will facilitate the election, adjustment and development of suitable tools. This proposal envisages continuous techno-economical assessment, which includes several tests in real conditions where prototypes of the cable-robot and the modular end-effector kit will be demonstrated. As an output of the research, the well balanced consortium and its interdisciplinary expertise will offer a realistic solution to cover primordial needs of the Built Environment and Construction sector.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: WATER-1b-2015 | Award Amount: 5.79M | Year: 2016

The Oil&Gas (O&G) industry is one of the 8 most water-intensive industries; indeed, it could be conceived as a water industry which delivers oil as a by-product. Specifically, by 2020 it is expected that over 500 million barrels/day of produced water (PW) and about 15 million m/day of refinery wastewater (RW) are generated. Despite the necessity and potential beneficial impacts of reusing the water involved in extraction and refining activities, several significant barriers are hampering this opportunity. Firstly, the existent commercial water treatment technologies cannot be used directly in the O&G sector without an extensive adaptation, and they are not flexible and reliable enough to bear the complexity and variability of PW/RW composition. Moreover, there is no expertise or experience in the O&G sector in the design and operation of water treatment systems. The INTEGROIL project aims to develop and demonstrate a robust but flexible integrated solution for treating O&G water flows with variable compositions to different water qualities depending on the final reuse objective. This new solution will be readily designed with different modules each comprising innovative water treatment technologies that will be operated and optimized in an integrated manner through a novel Decision Support System, in line with 3 priorities of the EIP Water. The INTEGROIL approach ensures minimal design and operational efforts involved from the O&G end-user side and that the energy and chemical costs are kept to an absolute minimum for a certain target water quality. Its feasibility and long-term application will be assessed through demo activities in 2 real operational conditions, that will provide critical information for the commercialisation actions to be undertaken. The INTEGROIL consortium brings together 10 entities (6 SMEs) covering the full value chain, including technology developers, O&G end-users, a Sustainability Assessment firm and a professional association.

Loading Acciona collaborators
Loading Acciona collaborators