Entity

Time filter

Source Type

Lucca Sicula, Italy

Investigated here are interactions of C-terminal amidated peptides with the hASIC1a acid-sensing ion channel. The peptides comprise endogenous FMRFa, present in the western Atlantic clam Sunray Venus, and FIRFa, present in cephalopods, as well as non-endogenous ones for comparison. The interaction is investigated by automated docking. The resulting key hASIC1a-FMRFa complex, set in a lipidic POPC (=1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane surrounded by H 2O and Na +-neutralized, was also investigated by molecular dynamics. It was observed that all investigated peptides become encapsulated into the ion channel, on one side by the thumb and finger of a subunit, and, on the opposite side, by the knuckle and β-ball of a second subunit. The third subunit is not involved. This is much the same binding site that was disclosed previously by both a similar computational approach, and electrophysiological and binding experiments for the hASIC1a ion channel-blocker tarantula toxin PCTX1. This paves the way to a better understanding of the role of these peptides in invertebrates. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich. Source


In this work, two protein systems, Kij3D-FMN-AKM-O2 and Kij3DFMNO2, made of KijD3 N-oxygenase, flavin mononucleotide (FMN) cofactor, dTDP-3-amino-2,3,6-trideoxy-4-keto-3-methyl-D-glucose (AKM) substrate, and dioxygen (O2), have been assembled by adding a molecule of O2, and removing (or not) AKM, to crystal data for the Kij3D-FMN-AKM complex. Egress of AKM and O2 from these systems was then investigated by applying a tiny external random force, in turn, to their center of mass in the course of molecular dynamics in explicit H2O. It turned out that the wide AKM channel, even when emptied, does not constitute the main route for O2 egress. Other routes appear to be also viable, while various binding pockets (BPs) outside the active center are prone to trap O2. By reversing the reasoning, these can also be considered as routes for uptake of O2 by the protein, before or after AKM uptake, while BPs may serve as reservoirs of O2. This shows that the small molecule O2 is capable of permeating the protein by exploiting all nearby interstices that are created on thermal fluctuations of the protein, rather than having necessarily to look for farther, permanent channels. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich. Source


In this work, by applying a non-deterministic, randomly-oriented minimal force to the dissociated CO ligand of the MauG-CO system, the molecular-dynamics (MD) behavior of this system could be quickly unraveled. It turned out that CO has no marked directional egress from the high-spin c-heme iron distal pocket. Rather, CO is able to exploit all interstices created during the protein fluctuations. Nonetheless, no steady route toward the surrounding solvent was ever observed: CO jumped first into other binding pockets before being able to escape the protein. In a few cases, on hitting the surrounding H2O molecules, CO was observed to reverse direction, re-entering the protein. A contention that conformational inversion of the P107 ring provides a gate to the iron ion is not supported by the present simulations. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich. Source


Pietra F.,Accademia Lucchese di Science
Chemistry and Biodiversity | Year: 2011

The pathways of escape of carbon monoxide (CO) from sperm whale myoglobin were investigated by means of a biased form of all-atoms molecular dynamics (RAMD), whereby a weak, randomly oriented force is applied to the center of mass of CO. The force only persists if the direction taken by CO continues for a given period of time, otherwise a new direction is randomly chosen. A statistically significant number of RAMD runs gave distinct responses according to the level of approximations used for the model. Thus, with rigid bonds to all H-atoms, several portals for CO egress toward the solvent, besides the main H64 gate, were identified, like in recently published unbiased massive MD, six orders of magnitude acceleration of CO escape in RAMD notwithstanding. In contrast, by removing the approximation of rigid bonds in the model, only one of these extra portals was identified, besides the H64 portal. Sticking to this all-free-bonds model, Perutz's early suggestion that the H64 imidazole must rotate 'out' toward the solvent in order that CO can cross the H64 gate was directly implemented. RAMD Simulations with this model led to CO egress from the H64 gate only, reconciling theory with experiments. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich. Source


Central inhibition of the acid-sensing hASIC1a channel, acting upstream of the opiate system, might serve to treat any type of pain, avoiding the unwanted addiction problems of the opioid drugs. To this end, inhibition of hASIC1a channel by PcTx1, a peptide from the Trinidad chevron tarantula, is under development. New inhibitors of the hASIC1a channel are also being sought, in the hope of further modulating the activity, from which antiplasmodial amidine and guanidine phenyl drugs have emerged as promising candidates. However, how such current inhibition takes place remains obscure from the molecular point of view, hindering any further progress in developing drugs. Therefore, the nature of the binding sites, and how they are reached by the amidine-guanidine drugs, was investigated here via automated docking and molecular dynamics with hASIC1a homology models. This study has revealed that this ion channel is rich in binding sites, and that flexible drugs, such as nafamostat, may penetrate it in a snake-like elongated conformation. Then, crawling like a snake through temporary holes in the protein, nafamostat either simply flips, or changes to a high-energy folded conformation to become adapted to the shape of the binding site. © 2012 Verlag Helvetica Chimica Acta AG, Zürich. Source

Discover hidden collaborations