Runcorn, United Kingdom
Runcorn, United Kingdom

Time filter

Source Type

Patent
ACAL Energy | Date: 2017-03-08

A gas-liquid separator system for a fuel cell, the system comprising: a coalescer apparatus, the coalescer apparatus comprising: an opening arranged to receive a flow of fluid; an array of screens arranged substantially parallel to the direction of fluid flow, wherein the screens are attached at each of their ends opposite the opening to an impermeable surface such that fluid is prevented from flowing through the impermeable surface and is directed through the screens; the system further comprising a reservoir for containing gas and liquid phases of the fluid, wherein the reservoir is arranged to receive fluid from the coalescer apparatus.


A fuel cell system is provided having a plurality of fuel cells combined to form a fuel cell stack. The fuel cell system is characterized in that at least one fuel cell is a redox flow fuel cell having an electrode assembly, which electrode assembly has a proton-permeable separator, which separator is arranged between an anode region and a cathode region. The redox flow fuel cell has a regenerator spatially separated from the electrode assembly, and a water-forming reaction of the redox flow fuel cell occurs in the regenerator. The redox flow fuel cell also has at least one oxidation-fluid delivery unit for feeding oxidation fluid into the regenerator in order to perform the water-forming reaction in the regenerator of the redox flow fuel cell. The redox flow fuel cell also has a pumping circuit, comprising a pumping device and a pumping line, for transporting an electrochemical storage system through the cathode region or the anode region of the redox flow fuel cell and through the regenerator. The electrochemical storage system contains active redox molecules and is designed to receive and release electrons. The fuel cell system also has a control device, which is designed to adjust an available electrical and/or thermal power of the fuel cell system by changing a redox state of the electrochemical storage system.


Patent
ACAL Energy | Date: 2014-05-02

A composition comprising a polyoxometalate and an additive tolerant to the properties of the polyoxometalate, wherein the properties of the polyoxometalate are maintained despite the presence of the additive, and wherein the additive is effective to reduce the freezing point and/or elevate the boiling point of the composition. Such a composition may be used in a fuel cell.


The present invention relates to a redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte membrane; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a non-volatile catholyte solution flowing in fluid communication with the cathode, the catholyte solution comprising a polyoxometallate redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant in a regeneration zone after such reduction at the cathode, the catholyte solution further comprising one or more vanadium species that result from the speciation of the polyoxometallate at an elevated temperature and/or pressure, wherein the polyoxometallate is represented by the formula: X_(a)[Z_(b)M_(c)O_(d)] wherein X is selected from hydrogen, alkali metals, alkaline earth metals, ammonium, transition metal ions and combinations of two or more thereof; Z is selected from B, P, S, As, Si, Ge, Ni, Rh, Sn, Al, Cu, I, Br, F, Fe, Co, Cr, Zn, H2, Te, Mn and Se and combinations of two or more thereof; M comprises vanadium and optionally one or more of Mo, W, Nb, Ta, Mn, Fe, Co, Cr, Ni, Zn Rh, Ru, TI, Al, Ga, In and other metals selected from the 1st, 2nd and 3rd transition metal series and the lanthanide series and combinations of two or more thereof; a is a number of X necessary to charge balance the [Z_(b)M_(c)O_(d)] anion; b is from 0 to 20; c is from 1 to 40; d is from 1 to 180; X includes an amount of a non-hydrogen cation and the molar ratio of the non-hydrogen cation to vanadium is more than 0 and less than 1.


Patent
ACAL Energy | Date: 2013-06-25

The present invention provides a redox battery comprising a polyoxometallate as at least one redox couple. Preferably, the redox battery comprises two electrodes separated by an ion exchange membrane or other separator; means for supplying a first redox couple to the first electrode region of the cell; means for supplying a second redox couple to the second electrode region of the cell, the potential of the first redox couple being higher than that of the second redox couple, and at least the higher potential redox couple comprising polyoxometallate.


Patent
ACAL Energy | Date: 2013-06-25

This invention provides a redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte membrane; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a non-volatile catholyte solution flowing in fluid communication with the cathode, the catholyte solution comprising a polyoxometallate redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant after such reduction at the cathode, the catholyte solution further comprising vanadium species that result from the speciation of the polyoxometallate at an elevated temperature and/or pressure.


Patent
ACAL Energy | Date: 2013-03-07

A redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte membrane; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a non-volatile catholyte solution flowing fluid communication with the cathode, the catholyte solution comprising a polyoxometallate redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant after such reduction at the cathode, wherein the polyoxometallate is represented by the formula: X_(a)[Z_(b)M_(c)O_(d)] Wherein X is selected from hydrogen, alkali metals, alkaline earth metals, ammonium and combinations of two or more thereof; Z is selected from B, P, S, As, Si, Ge, Ni, Rh, Sn, Al, Cu, I, Br, F, Fe, Co, Cr, Zn, H_(2), Te, Mn and Se and combinations of two or more thereof; M comprises W and optionally one or more of Mo, V, Nb, Ta, Mn, Fe, Co, Cr, Ni, Zn Rh, Ru, Tl, Al, Ga, In and other metals selected from the 1^(st), 2^(nd )and 3^(rd )transition metal series and the lanthanide series; a is a number of X necessary to charge balance the [Z_(b)M_(c)O_(d)]^(a) anion; b is from 0 to 5; c is from 5 to 20; and d is from 1 to 180.


Patent
ACAL Energy | Date: 2013-01-25

The present invention concerns in one aspect a separator for separating the gas and liquid phases of a foam and, in another aspect, a foam reducing apparatus. The separator comprises a first side and a second side and having through-flow means provided therein for permitting a foam or a foam phase to pass from the first side to the second side, the separator further comprising at least one foam contacting surface having a low surface energy, and means for recovering at least one separated foam phase from the foam. The foam reducing apparatus comprises a low surface energy material and means for contacting foam, when said foam is input to the foam reduction apparatus, along a surface of said low surface energy material. The separator and the foam reducing apparatus may be used independently or in combination to good effect to more efficiently disrupt foam to provide separate gas and liquid phases.


Patent
ACAL Energy | Date: 2014-11-07

A fuel cell assembly (101) comprises an electrode (1601) in a reaction region, the assembly (101) configured with an electrolyte flow path (601) for flowing communication of an electrolyte with the electrode (1601); a supply device (1701) for controllably supplying a regeneration component to the electrolyte; and a monitor device (801) operable to monitor the oxidation state of the electrolyte. The electrolyte comprises a redox couple, the oxidation state of which changes with both reaction at the electrode (1601) and contact with the regeneration component. The monitor device (801) is configured to output a signal representative of the oxidation state of the electrolyte and the supply device (1701) is configured to be responsive to the output of the signal to control supply of the regeneration component to the electrolyte.


Patent
ACAL Energy | Date: 2013-02-11

The invention provides a fuel cell comprising an anode in an anode region of the cell and a cathode in a cathode region of the cell, the anode being separated from the cathode by an ion selective polymer electrolyte membrane, the anode region of the cell being supplied in use thereof with an alcoholic fuel, the cathode region of the cell being supplied in use thereof with an oxidant, the cell being provided with means for generating an electrical circuit between the anode and the cathode and with a non-volatile redox couple in solution in flowing fluid communication with the cathode in the cathode region of the cell, the redox couple being at least partially reduced at the cathode in operation of the cell, and at least partially regenerated by reaction with the oxidant after such reduction at the cathode.

Loading ACAL Energy collaborators
Loading ACAL Energy collaborators