Time filter

Source Type

Zhou B.,South China University of Technology | Zhou B.,Central South University of forestry and Technology | Peng D.,South China University of Technology | Peng D.,Academy of Seed Industry of Hunan Yahua | And 4 more authors.
Protein Expression and Purification | Year: 2015

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy. © 2015.

Zhou B.,Hunan University | Peng D.,Hunan University | Lin J.,Hunan University | Huang X.,Hunan University | And 6 more authors.
Journal of Plant Biology | Year: 2011

Gibberellins (GAs) are endogenous hormones that play an important role in regulating plant stature by increasing cell division and promoting seed germination. The GA2-oxidase gene from Arabidopsis thaliana (AtGA2ox8) was introduced into Brassica napus L. by Agrobacterium-mediated floral-dip transformation with the aim of decreasing the amount of bioactive GA and hence reduced the plant height. As anticipated, the transgenic plant exhibited dwarf phenotype. Importantly, compared with the wild type, the transgenic plants had delayed the seed germination, increased the chlorophyll content (28.7-36.3%) and photosynthesis capacity (14.3-18.7%) in a single leaf. At the same time, the photosynthesis capacity of the whole plants was significantly enhanced (35.7-48.6%) due to the extra leaves and branches. © 2010 The Botanical Society of Korea.

Zhou Y.,Hunan University | Liu H.,Fujian Agriculture and forestry University | Zhou X.,Hunan University | Yan Y.,Academy of Seed Industry of Hunan Yahua | And 10 more authors.
Molecular Breeding | Year: 2014

Glutamate dehydrogenase (GDH) tends to have a lower affinity for ammonium than glutamine synthetase (GS) in higher plants. Consequently, nitrogen is mostly assimilated as ammonium by the GS/glutamate synthase pathway which requires 2-oxoglutarate (2-OG) as carbon skeletons. In contrast, the NADP(H)-dependent GDH in fungi has a higher affinity for ammonium than that in higher plants and plays a more significant part in ammonium assimilation. We isolated an NADP(H)-GDH gene (PcGDH) from the fungus Pleurotus cystidiosus and heterologously expressed it in rice (Oryza sativa L.). Alterations in nitrogen assimilation, growth, metabolism, and grain yield were observed in the transgenic plants. An investigation of the kinetic properties of the purified recombinant protein demonstrated that the amination activity (7.05 ± 0.78 μmoL min-1 mg soluble protein-1) of PcGDH was higher than the deamination activity (3.36 ± 0.42 μmoL min-1 mg soluble protein-1) and that the Km value for ammonium (Km = 3.73 ± 0.23 mM) was lower than that for the glutamate (Km = 15.97 ± 0.31 mM), indicating that the PcGDH tends to interconvert 2-OG and glutamate. Examination of the activity of NADP(H)-GDH in control and transgenic lines demonstrated that NADP(H)-GDH activity in the transgenic lines was markedly higher than that in the control lines; in particular, the amination activity was significantly higher than the deamination activity in shoots of the transgenic lines. The results of the hydroponics experiment revealed that shoot and root length, fresh weight, chlorophyll content, nitrogen content, and amino acid levels (glutamate, glutamine, and total amino acids) were elevated in transgenic lines in comparison with those of the control line under different nitrogen conditions at seedling stage. The 1,000-grain weight and the panicle number in transgenic lines were considerably augmented in the field condition, yet the filled grain rate dropped slightly and there was no apparent change in the grain yield. The levels of glutelin and prolamine in the transgenic seeds were considerably higher than those in control seeds. In conclusion, these results demonstrate that heterologous expression of P. cystidiosus GDH (PcGDH) could improve nitrogen assimilation and growth in rice. © 2014 Springer Science+Business Media Dordrecht.

Zhao X.-Y.,Hunan University | Zhu D.-F.,Hunan University | Zhu D.-F.,Chinese Academy of Sciences | Zhou B.,Hunan University | And 9 more authors.
Journal of Zhejiang University: Science B | Year: 2010

Gibberellin 2-oxidase (GA 2-oxidase) plays very important roles in plant growth and development. In this study, the AtGA2ox8 gene, derived from Arabidopsis (Arabidopsis thaliana), was transformed and over-expressed in rapeseed (Brassica napus L.) to assess the role of AtGA2ox8 in biomass accumulation and lignification in plants. The transgenic plants, identified by resistant selection, polymerase chain reaction (PCR) and reverse-transcription PCR (RT-PCR) analyses, and green fluorescence examination, showed growth retardation, flowering delay, and dwarf stature. The fresh weight and dry weight in transgenic lines were about 21% and 29% lower than those in wild type (WT), respectively, and the fresh to dry weight ratios were higher than that of WT. Quantitative measurements demonstrated that the lignin content in transgenic lines decreased by 10%-20%, and histochemical staining results also showed reduced lignification in transgenic lines. Quantitative real-time PCR analysis indicated that the transcript levels of lignin biosynthetic genes in transgenic lines were markedly decreased and were consistent with the reduced lignification. These results suggest that the reduced biomass accumulation and lignification in the AtGA2ox8 overexpression rapeseed might be due to altered lignin biosynthetic gene expression. © 2010 Zhejiang University and Springer-Verlag Berlin Heidelberg.

Zhou B.,Hunan University | Lin J.,Hunan University | Peng W.,Academy of Seed Industry of Hunan Yahua | Peng D.,Hunan University | And 10 more authors.
Molecular Breeding | Year: 2012

Gibberellins (GAs) are endogenous hormones that play an important role in regulating plant stature by increasing cell division and elongation in stem internodes. The GA2-oxidase gene from Arabidopsis thaliana (AtGA2ox8) was introduced into Brassica napus L. by Agrobacterium-mediated floral-dip transformation with the aim of decreasing the amount of bioactive GA and hence reducing plant stature. As anticipated, the transgenic plants exhibited dwarf phenotype. Compared with the wild type, the transgenic plants had increased primary branches (by 14.1-15.3%) and siliques (by 10.8-15.2%), which resulted in a significant increase in the seed yield (by 9.6-12.4%). Moreover, the contents of anthocyanin in leaves of 60-day-old transgenic plants was about 9.4-fold higher in winter and about 6. 8-fold higher in summer than the wild type. These excellent agronomic traits of the transgenic plants could not only improve the lodging resistance and seed yields, but also protect them against stress. Therefore, the over-expression of AtGA2ox8 might be used to produce dwarf varieties and increase seed yield in Brassica napus L. © 2010 Springer Science+Business Media B.V.

Du C.,Hunan University | Lin J.,Hunan University | Yang Y.,Academy of Seed Industry of Hunan Yahua | Liu H.,Fujian Agriculture and forestry University | And 7 more authors.
Molecular Biology Reports | Year: 2014

The full-length cDNA encoding a glutamate dehydrogenase (GDH) which catalyzes the reaction of reductive amination of α-oxoglutarate (α-OG) to glutamate (the anabolic activity) and the reverse reaction of oxidative deamination of glutamate (the catabolic activity) was isolated from Sclerotinia sclerotiorum, we designated it as SsGDH. Bioinformatics analysis revealed that SsGDH had a typical GDH spatial structure and extensive homology with other fungal or bacteria GDHs. To evaluate its function in rice, rice (Oryza sativa L. cv. 'kitaake') was transformed with SsGDH in a binary vector construct by Agrobacterium-mediated transformation. Transgenic rice plants showed that transcripts and proteins of SsGDH accumulated at higher levels and GDH enzymatic activity was obviously higher in transgenic rice plants compared with the non-transformant rice plants (CK), though phenotype including plant height, fresh weight and dry weight became slightly weaker compared with CK under 50, 500 and 5,000 μM nitrogen gradient nutrient solution treatment (NH4NO3 as a nitrogen source) after introducing SsGDH into rice. For enzymatic activity assay in vitro, recombinant His6-SsGDH protein was expressed in Escherichia coli BL21 (DE3) and purified by Ni-NTA agarose. Results suggested that recombinant His6-SsGDH protein had GDH activity using ammonium, α-OG, and l-glutamate separately as a substrate at two different concentrations, especially the affinity for ammonium was very high, and its Km value was only 0.28 ± 0.03 mM, indicating that SsGDH can assimilate more ammonium into rice. According to previous reports, transgenic plants expressing fungal or bacteria GDHs might show improved herbicide resistance. Basta resistance test showed that SsGDH expression in rice can significantly enhanced their tolerance to Basta than CK. In conclusion, our results may provide some clues for further investigation on nitrogen utilization via introducing exogenous GDHs from lower organisms into rice. © 2014 Springer Science+Business Media.

Zhou Y.,Hunan University | Zhang C.,Hunan University | Lin J.,Hunan University | Yang Y.,Academy of Seed Industry of Hunan Yahua | And 5 more authors.
Planta | Year: 2014

Main conclusion: Heterologous expression of a fungal NADP(H)-GDH gene (MgGDH) fromMagnaporthe griseacan improve dehydration stress tolerance in rice by preventing toxic accumulation of ammonium. Glutamate dehydrogenase (GDH; EC and EC may act as a stress-responsive enzyme in detoxification of high intracellular ammonia and production of glutamate for proline synthesis under stress conditions. In present study, a fungal NADP(H)-GDH gene (MgGDH) from Magnaporthe grisea was over-expressed in rice (Oryza sativa L. cv. ‘kitaake’), and the transgenic plants showed the improvement of tolerance to dehydration stress. The kinetic analysis showed that His-TF-MgGDH preferentially utilizes ammonium to produce l-glutamate. Moreover, the affinity of His-TF-MgGDH for ammonium was dramatically higher than that of His-TF-OsGDH for ammonium. Over-expressing MgGDH transgenic rice plants showed lower water-loss rate and higher completely close stomata than the wild-type plants under dehydration stress conditions. In transgenic plants, the NADP(H)-GDH activities were markedly higher than those in wild-type plants and the amination activity was significantly higher than the deamination activity. Compared with wild-type plants, the transgenic plants accumulated much less NH4 + but higher amounts of glutamate, proline and soluble sugar under dehydration stress conditions. These results indicate that heterologous expression of MgGDH can prevent toxic accumulation of ammonium and in return improve dehydration stress tolerance in rice. © 2014, Springer-Verlag Berlin Heidelberg.

PubMed | Hunan Normal University, Hunan University and Academy of Seed Industry of Hunan Yahua
Type: | Journal: Journal of integrative plant biology | Year: 2017

NADP(H)-dependent glutamate dehydrogenases (GDH) in lower organisms have stronger ammonium affinity than those ones from higher plants. Here we report that transgenic rice overexpressing the EcGDH from Eurotium cheralieri exhibited significantly enhanced aminating activities. Hydroponic and field tests showed that nitrogen assimilation efficiency and grain yields were markedly increased in these transgenic plants, especially at the low nitrogen condition. These results suggest that EcGDH may have potential to be used to improve nitrogen assimilation and grain yield in rice.

PubMed | Hunan University, Academy of Seed Industry of Hunan Yahua and Central South University of forestry and Technology
Type: | Journal: Plant science : an international journal of experimental plant biology | Year: 2016

In many plants, architecture and grain yield are affected by both the environment and genetics. In rice, the tiller is a vital factor impacting plant architecture and regulated by many genes. In this study, we cloned a novel DHHC-type zinc finger protein gene Os02g0819100 and its alternative splice variant OsDHHC1 from the cDNA of rice (Oryza sativa L.), which regulate plant architecture by altering the tiller in rice. The tillers increased by about 40% when this type of DHHC-type zinc finger protein gene was over-expressed in Zhong Hua 11 (ZH11) rice plants. Moreover, the grain yield of transgenic rice increased approximately by 10% compared with wild-type ZH11. These findings provide an important genetic engineering approach for increasing rice yields.

PubMed | Hunan University and Academy of Seed Industry of Hunan Yahua
Type: Journal Article | Journal: Genetics and molecular research : GMR | Year: 2014

Exogenous gibberellins (GAs) are widely applied to increase crop yields, with knowledge about the physiological functioning and biochemistry mechanisms of these phytohormones improving; however, information remains limited about the effect of GAs on seed filling. In this study, the siliques (containing the seeds) of oilseed rape (Brassica napus L.) were treated with GA3 at 3 stages of seed filling. We confirmed that GA3 regulates the deposition of storage reserves in developing seeds. The percentage of crude fat in the seeds increased during the early stage, but remained stable during the middle and late stages. In comparison, the percentage of total protein decreased during the early and middle stages, but significantly increased during the late stage. In addition, Q-PCR was employed to analyze the expression level of related genes in response to GA3. It was found that the expression of WRI and ABI3 transcription factors corresponded to crude fat content and total protein content, respectively. The expression of storage reserve related genes DGAT, MCAT, SUC2, and GPT was consistent with crude fat content, whereas the expression of Napin corresponded to total protein content. The results of this study indicate that exogenous GA3 has a different effect on storage reserve deposition in seed during different stages of seed filling, and the effect might be achieved via changing the expression of related genes.

Loading Academy of Seed Industry of Hunan Yahua collaborators
Loading Academy of Seed Industry of Hunan Yahua collaborators