Entity

Time filter

Source Type


Wu J.-J.,Inner Mongolia University | Du R.-P.,Academy of Inner Mongolia | Gao M.,Academy of Inner Mongolia | Sui Y.-Q.,Inner Mongolia University | And 2 more authors.
Asian-Australasian Journal of Animal Sciences | Year: 2014

Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. Copyright © 2014 by Asian-Australasian Journal of Animal Sciences. Source


Liu D.-C.,Inner Mongolia Agricultural University | Liu D.-C.,Key Laboratory of Clinical Diagnosis | Zhou X.-L.,Inner Mongolia Agricultural University | Zhou X.-L.,Key Laboratory of Clinical Diagnosis | And 6 more authors.
Journal of Integrative Agriculture | Year: 2013

Six rumen-cannulated lactating Guanzhong goats were used to investigate changes in ruminal fermentation pattern and the microbiota following a subacute ruminal acidosis (SARA) inducing procedure. Induction of SARA was performed by increasing dietary non-fiber carbohydrate (NFC) to neutral detergent fiber (NDF) ratio from 1.02 (stage 1) to 1.24 (stage 2), 1.63 (stage 3) and 2.58 (stage 4). A dynamic pH monitoring system, real-time fluorescent quantitative PCR and conventional anaerobic culture were used to assess changes in ruminal pH and microbiota. Results indicated that rumen fermentation patterns changed significantly with increased NFC: NDF ratio. The decline in ruminal pH was caused by increased ruminal total volatile fatty acids (TVFA), which was mainly attributed to a significant increase in ruminal butyrate, rather than the accumulation of ruminal lactic acid. In addition, in the course of SARA, the number of rumen microoganisms altered significantly, with increases in ruminal amylolytic bacteria, Lactobacilli, Streptococcus bovis and Megasphaera elsdenii, the latter particularly dramatically indicating that it may be the main factor responsible for the increase in butyrate, and decrease in protozoa. © 2013 Chinese Academy of Agricultural Sciences. Source

Discover hidden collaborations