Time filter

Source Type

Roska B.,Friedrich Miescher Institute for Biomedical Research | Busskamp V.,Friedrich Miescher Institute for Biomedical Research | Sahel J.A.,University Pierre and Marie Curie | Sahel J.A.,French Institute of Health and Medical Research | And 8 more authors.
Biologie Aujourd'hui | Year: 2013

Retinitis pigmentosa (RP) is a hereditary retinal disease leading to blindness, which affects two million people worldwide. Restoring vision in these blind patients was proposed by gene delivery of microbial light-activated ionic channels or pumps "optogenetic proteins" to transform surviving cells into artificial photoreceptors. This therapeutic strategy was validated in blind animal models of RP by recording at the level of the retina and cortex and by behavioural tests. The translational potentials of these optogenetic approaches have been evaluated using in vitro studies on post-mortem human retinal tissues. Here, we review these recent results and discuss the potential clinical applications of the optogenetic therapy for RP patients. © , 2013 Société de Biologie.

Manes G.,Institute National Of La Sante | Manes G.,Montpellier University | Meunier I.,Institute National Of La Sante | Meunier I.,Montpellier University | And 45 more authors.
American Journal of Human Genetics | Year: 2013

Vitelliform macular dystrophies (VMD) are inherited retinal dystrophies characterized by yellow, round deposits visible upon fundus examination and encountered in individuals with juvenile Best macular dystrophy (BMD) or adult-onset vitelliform macular dystrophy (AVMD). Although many BMD and some AVMD cases harbor mutations in BEST1 or PRPH2, the underlying genetic cause remains unknown for many affected individuals. In a large family with autosomal-dominant VMD, gene mapping and whole-exome sequencing led to the identification of a c.713T>G (p.Leu238Arg) IMPG1 mutation, which was subsequently found in two other families with autosomal-dominant VMD and the same phenotype. IMPG1 encodes the SPACR protein, a component of the rod and cone photoreceptor extracellular matrix domains. Structural modeling indicates that the p.Leu238Arg substitution destabilizes the conserved SEA1 domain of SPACR. Screening of 144 probands who had various forms of macular dystrophy revealed three other IMPG1 mutations. Two individuals from one family affected by autosomal-recessive VMD were homozygous for the splice-site mutation c.807+1G>T, and two from another family were compound heterozygous for the mutations c.461T>C (p.Leu154Pro) and c.1519C>T (p.Arg507*). Most cases had a normal or moderately decreased electrooculogram Arden ratio. We conclude that IMPG1 mutations cause both autosomal-dominant and -recessive forms of VMD, thus indicating that impairment of the interphotoreceptor matrix might be a general cause of VMD. © 2013 The American Society of Human Genetics.

El Mathari B.,French Institute of Health and Medical Research | Charles-Messance H.,French Institute of Health and Medical Research | Vacca O.,French Institute of Health and Medical Research | Guillonneau X.,French Institute of Health and Medical Research | And 9 more authors.
Human Molecular Genetics | Year: 2015

We have previously shown that the deletion of the dystrophin Dp71 gene induces a highly permeable blood-retinal barrier (BRB). Given that BRB breakdown is involved in retinal inflammation and the pathophysiology of many blinding eye diseases, here we investigated whether the absence of Dp71 brings out retinal vascular inflammation and vessel loss by using specific Dp71-null mice. The expression of vascular endothelial growth factor (VEGF), quantified by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods, was higher in the retina of Dp71-null mice than in wild-type mice. In contrast, no differences were observed in VEGFR-2 and tumor necrosis factor-α expression. Moreover, mRNA expression of water channel, aquaporin 4 (AQP4) was increased after Dp71 deletion. The Dp71 deletion was also associated with the overexpression of intercellular adhesion molecule 1, which is expressed on endothelial cells surface to recruit leukocytes. Consistent with these findings, the total number of adherent leukocytes per retina, assessed after perfusion with fluorescein isothiocyanate-conjugated concanavalin A, was increased in the absence of Dp71. Finally, a significant increase in capillary degeneration quantified after retinal trypsin digestion was observed in mice lacking Dp71. These data illustrate for the first time that the deletion of Dp71 was associated with retinal vascular inflammation, vascular lesions with increased leukocyte adhesion and capillary degeneration. Thus, dystrophin Dp71 could play a critical role in retinal vascular inflammation disease, and therefore represent a potential therapeutic target. © The Author 2015. Published by Oxford University Press. All rights reserved.

Falk M.J.,Children's Hospital of Philadelphia | Zhang Q.,Massachusetts Eye and Ear Infirmary | Nakamaru-Ogiso E.,University of Pennsylvania | Kannabiran C.,LV Prasad Eye Institute LVPEI | And 42 more authors.
Nature Genetics | Year: 2012

Leber congenital amaurosis (LCA) is an infantile-onset form of inherited retinal degeneration characterized by severe vision loss. Two-thirds of LCA cases are caused by mutations in 17 known disease-associated genes (Retinal Information Network (RetNet)). Using exome sequencing we identified a homozygous missense mutation (c.25G>A, p.Val9Met) in NMNAT1 that is likely to be disease causing in two siblings of a consanguineous Pakistani kindred affected by LCA. This mutation segregated with disease in the kindred, including in three other children with LCA. NMNAT1 resides in the previously identified LCA9 locus and encodes the nuclear isoform of nicotinamide mononucleotide adenylyltransferase, a rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD+) biosynthesis. Functional studies showed that the p.Val9Met alteration decreased NMNAT1 enzyme activity. Sequencing NMNAT1 in 284 unrelated families with LCA identified 14 rare mutations in 13 additional affected individuals. These results are the first to link an NMNAT isoform to disease in humans and indicate that NMNAT1 mutations cause LCA. © 2012 Nature America, Inc. All rights reserved.

Arnault E.,University Pierre and Marie Curie | Arnault E.,French Institute of Health and Medical Research | Arnault E.,French National Center for Scientific Research | Barrau C.,Essilor | And 28 more authors.
PLoS ONE | Year: 2013

Among the identified risk factors of age-related macular degeneration, sunlight is known to induce cumulative damage to the retina. A photosensitive derivative of the visual pigment, N-retinylidene-N-retinylethanolamine (A2E), may be involved in this phototoxicity. The high energy visible light between 380 nm and 500 nm (blue light) is incriminated. Our aim was to define the most toxic wavelengths in the blue-green range on an in vitro model of the disease. Primary cultures of porcine retinal pigment epithelium cells were incubated for 6 hours with different A2E concentrations and exposed for 18 hours to 10 nm illumination bands centered from 380 to 520 nm in 10 nm increments. Light irradiances were normalized with respect to the natural sunlight reaching the retina. Six hours after light exposure, cell viability, necrosis and apoptosis were assessed using the Apotox-Glo Triplex™ assay. Retinal pigment epithelium cells incubated with A2E displayed fluorescent bodies within the cytoplasm. Their absorption and emission spectra were similar to those of A2E. Exposure to 10 nm illumination bands induced a loss in cell viability with a dose dependence upon A2E concentrations. Irrespective of A2E concentration, the loss of cell viability was maximal for wavelengths from 415 to 455 nm. Cell viability decrease was correlated to an increase in cell apoptosis indicated by caspase-3/7 activities in the same spectral range. No light-elicited necrosis was measured as compared to control cells maintained in darkness. Our results defined the precise spectrum of light retinal toxicity in physiological irradiance conditions on an in vitro model of age-related macular degeneration. Surprisingly, a narrow bandwidth in blue light generated the greatest phototoxic risk to retinal pigment epithelium cells. This phototoxic spectrum may be advantageously valued in designing selective photoprotection ophthalmic filters, without disrupting essential visual and non-visual functions of the eye. © 2013 Arnault et al.

Sahel J.-A.,Paris-Sorbonne University | Sahel J.-A.,French Institute of Health and Medical Research | Sahel J.-A.,French National Center for Scientific Research | Sahel J.-A.,Rothschild | And 9 more authors.
Cold Spring Harbor Perspectives in Medicine | Year: 2015

Inherited retinal degenerations (IRDs) encompass a large group of clinically and genetically heterogeneous diseases that affect approximately 1 in 3000 people (>2 million people worldwide) (Bessant DA, Ali RR, Bhattacharya SS. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11: 307-316.). IRDs may be inherited as Mendelian traits or through mitochondrial DNA, and mayaffect the entire retina (e.g., rod-cone dystrophy, also known as retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, choroideremia, Usher syndrome, and Bardet-Bidel syndrome) or be restricted to the macula (e.g., Stargardt disease, Best disease, and Sorsby fundus dystrophy), ultimately leading to blindness. IRDs are a major cause of severe vision loss, with profound impact on patients and society. Although IRDs remain untreatable today, significant progress toward therapeutic strategies for IRDs has marked the past two decades. This progress has been based on better understanding of the pathophysiological pathways of these diseases and on technological advances. © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

Orhan E.,French Institute of Health and Medical Research | Orhan E.,French National Center for Scientific Research | Orhan E.,University Pierre and Marie Curie | Prezeau L.,Montpellier University | And 30 more authors.
Investigative Ophthalmology and Visual Science | Year: 2013

Purpose. Mutations in GPR179, which encodes the G protein-coupled receptor 179, lead to autosomal recessive complete (c) congenital stationary night blindness (CSNB), which is characterized by an ON-bipolar retinal cell dysfunction. This study further defined the exact site of Gpr179 expression and its protein localization in human retina and elucidated the pathogenic mechanism of the reported missense and splice site mutations. Methods. RNA in situ hybridization was performed with mouse retinal sections. A commercially available antibody was validated with GPR179-overexpressing COS-1 cells and applied to human retinal sections. Live-cell extracellular staining along with subsequent intracellular immunolocalization and ELISA studies were performed using mammalian cells overexpressing wild-type or missense mutated GPR179. Wild-type and splice site-mutated mini-gene constructs were transiently transfected, and RNA was extracted. RT-PCR-amplified products were cloned, and Sanger sequenced. Results. Mouse Gpr179 transcript was expressed in the upper part of the inner nuclear layer, and the respective human protein localized at the dendritic tips of bipolar cells in human retina. The missense mutations p.Tyr220Cys, p.Gly455Asp, and p.His603Tyr led to severely reduced cell surface localization, whereas p.Asp126His did not. The mutated splice donor site altered GPR179 splicing. Conclusions. Our findings indicate that the site of expression and protein localization of human and mouse GPR179 is similar to that of other proteins implicated in cCSNB. For most of the mutations identified so far, loss of the GPR179 protein function seems to be the underlying pathogenic mechanism leading to this form of cCSNB. © 2013 The Association for Research in Vision and Ophthalmology, Inc.

Audo I.,French Institute of Health and Medical Research | Audo I.,French National Center for Scientific Research | Audo I.,University Pierre and Marie Curie | Audo I.,University College London | And 35 more authors.
Orphanet Journal of Rare Diseases | Year: 2012

Background: Inherited retinal disorders are clinically and genetically heterogeneous with more than 150 gene defects accounting for the diversity of disease phenotypes. So far, mutation detection was mainly performed by APEX technology and direct Sanger sequencing of known genes. However, these methods are time consuming, expensive and unable to provide a result if the patient carries a new gene mutation. In addition, multiplicity of phenotypes associated with the same gene defect may be overlooked. Methods. To overcome these challenges, we designed an exon sequencing array to target 254 known and candidate genes using Agilent capture. Subsequently, 20 DNA samples from 17 different families, including four patients with known mutations were sequenced using Illumina Genome Analyzer IIx next-generation-sequencing (NGS) platform. Different filtering approaches were applied to identify the genetic defect. The most likely disease causing variants were analyzed by Sanger sequencing. Co-segregation and sequencing analysis of control samples validated the pathogenicity of the observed variants. Results: The phenotype of the patients included retinitis pigmentosa, congenital stationary night blindness, Best disease, early-onset cone dystrophy and Stargardt disease. In three of four control samples with known genotypes NGS detected the expected mutations. Three known and five novel mutations were identified in NR2E3, PRPF3, EYS, PRPF8, CRB1, TRPM1 and CACNA1F. One of the control samples with a known genotype belongs to a family with two clinical phenotypes (Best and CSNB), where a novel mutation was identified for CSNB. In six families the disease associated mutations were not found, indicating that novel gene defects remain to be identified. Conclusions: In summary, this unbiased and time-efficient NGS approach allowed mutation detection in 75% of control cases and in 57% of test cases. Furthermore, it has the possibility of associating known gene defects with novel phenotypes and mode of inheritance. © 2012 Audo et al; licensee BioMed Central Ltd.

Fort P.E.,French Institute of Health and Medical Research | Fort P.E.,University of Michigan | Darche M.,French Institute of Health and Medical Research | Sahel J.-A.,French Institute of Health and Medical Research | And 7 more authors.
Molecular Vision | Year: 2014

Purpose: Dp71 is the main product of the Duchenne muscular dystrophy (DMD) gene in the central nervous system. While studying the impact of its absence on retinal functions, we discovered that mice lacking Dp71 also developed a progressive opacification of the crystalline lens. The purpose of this study was to perform a detailed characterization of the cataract formation in Dp71 knockout (KO-Dp71) mice.Methods: Cataract formations in KO-Dp71 mice and wild-type (wt) littermates were assessed in vivo by slit-lamp examination and ex vivo by histological analysis as a function of aging. The expression and cellular localization of the DMD gene products were monitored by western blot and immunohistochemical analysis. Fiber cell integrity was assessed by analyzing the acting cytoskeleton as well as the expression of aquaporin-0 (AQP0).Results: As expected, a slit-lamp examination revealed that only one of the 20 tested wt animals presented with a mild opacification of the lens and only at the most advanced age. However, a lack of Dp71 was associated with a 40% incidence of cataracts as early as 2 months of age, which progressively increased to full penetrance by 7 months. A subsequent histological analysis revealed an alteration in the structures of the lenses of KO-Dp71 mice that correlated with the severity of the lens opacity. An analysis of the expression of the different dystrophin gene products revealed that Dp71 was the major DMD gene product expressed in the lens, especially in fiber cells. The role of Dp71 in fiber cells was also suggested by the progressive disorganization of the lens fibers, which was observed in the absence of Dp71 and demonstrated by irregular staining of the acting network and the aqueous channel AQP0.Conclusions: While its role in the retina has been well characterized, this study demonstrates for the first time the role played by Dp71 in a different ocular tissue: the crystalline lens. It primarily demonstrates the role that Dp71 plays in the maintenance of the integrity of the secondary lens fibers. © 2014 Molecular Vision.

Vacca O.,French Institute of Health and Medical Research | Darche M.,French Institute of Health and Medical Research | Schaffer D.V.,University of California at Berkeley | Flannery J.G.,University of California at Berkeley | And 6 more authors.
GLIA | Year: 2014

Formation and maintenance of the blood-retinal barrier (BRB) is required for proper vision and breaching of this barrier contributes to the pathology in a wide variety of retinal conditions such as retinal detachment and diabetic retinopathy. Dystrophin Dp71 being a key membrane cytoskeletal protein, expressed mainly in Müller cells, its absence has been related to BRB permeability through delocalization and down-regulation of the AQP4 and Kir4.1 channels. Dp71-null mouse is thus an excellent model to approach the study of retinal pathologies showing blood-retinal barrier permeability. We aimed to investigate the participation of Müller cells in the BRB and in the inner limiting membrane of Dp71-null mice compared with wild-type mice in order to understand how these barriers work in this model of permeable BRB. To this aim, we used an Adeno-associated virus (AAV) variant, ShH10-GFP, engineered to target Müller cells specifically. ShH10 coding GFP was introduced by intravitreal injection and Müller cell transduction was studied in Dp71-null mice in comparison to wild-type animals. We show that Müller cell transduction follows a significantly different pattern in Dp71-null mice indicating changes in viral cell-surface receptors as well as differences in the permeability of the inner limiting membrane in this mouse line. However, the compromised BRB of the Dp71-null mice does not lead to virus leakage into the bloodstream when the virus is injected intravitreally - an important consideration for AAV-mediated retinal gene therapy. © 2013 Wiley Periodicals, Inc.

Loading Academie Des Science Institute Of France collaborators
Loading Academie Des Science Institute Of France collaborators