Academie Des Science Institute Of France

Paris, France

Academie Des Science Institute Of France

Paris, France
SEARCH FILTERS
Time filter
Source Type

Neuille M.,French Institute of Health and Medical Research | Cao Y.,Scripps Research Institute | Caplette R.,French Institute of Health and Medical Research | Guerrero-Given D.,Max Planck Florida Institute for Neuroscience | And 13 more authors.
Investigative Ophthalmology and Visual Science | Year: 2017

PURPOSE. Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). Using a cCSNB mouse model lacking Lrit3 (nob6), we recently have shown that LRIT3 has a role in the correct localization of TRPM1 (transient receptor potential melastatin 1) to the dendritic tips of ON-bipolar cells (BCs), contacting both rod and cone photoreceptors. Furthermore, postsynaptic clustering of other mGluR6 cascade components is selectively eliminated at the dendritic tips of cone ON-BCs. The purpose of this study was to further define the role of LRIT3 in structural and functional organization of cone synapses. METHODS. Exhaustive electroretinogram analysis was performed in a patient with LRIT3 mutations. Multielectrode array recordings were performed at the level of retinal ganglion cells in nob6 mice. Targeting of GluR1 and GluR5 at the dendritic tips of OFF-BCs in nob6 retinas was assessed by immunostaining and confocal microscopy. The ultrastructure of photoreceptor synapses was evaluated by electron microscopy in nob6 mice. RESULTS. The patient with LRIT3 mutations had a selective ON-BC dysfunction with relatively preserved OFF-BC responses. In nob6 mice, complete lack of ON-pathway function with robust, yet altered signaling processing in OFF-pathways was detected. Consistent with these observations, molecules essential for the OFF-BC signaling were normally targeted to the synapse. Finally, synaptic contacts made by ON-BC but not OFF-BC neurons with the cone pedicles were disorganized without ultrastructural alterations in cone terminals, horizontal cell processes, or synaptic ribbons. CONCLUSIONS. These results suggest that LRIT3 is likely involved in coordination of the transsynaptic communication between cones and ON-BCs during synapse formation and function. © 2017 The Authors.


Neuille M.,French Institute of Health and Medical Research | Neuille M.,French National Center for Scientific Research | Neuille M.,Paris-Sorbonne University | Morgans C.W.,Oregon Health And Science University | And 22 more authors.
European Journal of Neuroscience | Year: 2015

Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 [no b-wave 6, (Lrit3nob6/nob6)], which displays similar abnormalities to patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3nob6/nob6 retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3nob6/nob6 mice. LRIT3 did not co-localize with ribeye or calbindin but co-localized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3nob6/nob6 mice. mGluR6, GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3nob6/nob6 mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, peanut agglutinin (PNA) labeling was severely reduced in the OPL in Lrit3nob6/nob6 mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. As tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.


Manes G.,Institute National Of La Sante | Manes G.,Montpellier University | Meunier I.,Institute National Of La Sante | Meunier I.,Montpellier University | And 45 more authors.
American Journal of Human Genetics | Year: 2013

Vitelliform macular dystrophies (VMD) are inherited retinal dystrophies characterized by yellow, round deposits visible upon fundus examination and encountered in individuals with juvenile Best macular dystrophy (BMD) or adult-onset vitelliform macular dystrophy (AVMD). Although many BMD and some AVMD cases harbor mutations in BEST1 or PRPH2, the underlying genetic cause remains unknown for many affected individuals. In a large family with autosomal-dominant VMD, gene mapping and whole-exome sequencing led to the identification of a c.713T>G (p.Leu238Arg) IMPG1 mutation, which was subsequently found in two other families with autosomal-dominant VMD and the same phenotype. IMPG1 encodes the SPACR protein, a component of the rod and cone photoreceptor extracellular matrix domains. Structural modeling indicates that the p.Leu238Arg substitution destabilizes the conserved SEA1 domain of SPACR. Screening of 144 probands who had various forms of macular dystrophy revealed three other IMPG1 mutations. Two individuals from one family affected by autosomal-recessive VMD were homozygous for the splice-site mutation c.807+1G>T, and two from another family were compound heterozygous for the mutations c.461T>C (p.Leu154Pro) and c.1519C>T (p.Arg507*). Most cases had a normal or moderately decreased electrooculogram Arden ratio. We conclude that IMPG1 mutations cause both autosomal-dominant and -recessive forms of VMD, thus indicating that impairment of the interphotoreceptor matrix might be a general cause of VMD. © 2013 The American Society of Human Genetics.


El Mathari B.,French Institute of Health and Medical Research | Charles-Messance H.,French Institute of Health and Medical Research | Vacca O.,French Institute of Health and Medical Research | Guillonneau X.,French Institute of Health and Medical Research | And 9 more authors.
Human Molecular Genetics | Year: 2015

We have previously shown that the deletion of the dystrophin Dp71 gene induces a highly permeable blood-retinal barrier (BRB). Given that BRB breakdown is involved in retinal inflammation and the pathophysiology of many blinding eye diseases, here we investigated whether the absence of Dp71 brings out retinal vascular inflammation and vessel loss by using specific Dp71-null mice. The expression of vascular endothelial growth factor (VEGF), quantified by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods, was higher in the retina of Dp71-null mice than in wild-type mice. In contrast, no differences were observed in VEGFR-2 and tumor necrosis factor-α expression. Moreover, mRNA expression of water channel, aquaporin 4 (AQP4) was increased after Dp71 deletion. The Dp71 deletion was also associated with the overexpression of intercellular adhesion molecule 1, which is expressed on endothelial cells surface to recruit leukocytes. Consistent with these findings, the total number of adherent leukocytes per retina, assessed after perfusion with fluorescein isothiocyanate-conjugated concanavalin A, was increased in the absence of Dp71. Finally, a significant increase in capillary degeneration quantified after retinal trypsin digestion was observed in mice lacking Dp71. These data illustrate for the first time that the deletion of Dp71 was associated with retinal vascular inflammation, vascular lesions with increased leukocyte adhesion and capillary degeneration. Thus, dystrophin Dp71 could play a critical role in retinal vascular inflammation disease, and therefore represent a potential therapeutic target. © The Author 2015. Published by Oxford University Press. All rights reserved.


Falk M.J.,Children's Hospital of Philadelphia | Zhang Q.,Massachusetts Eye and Ear Infirmary | Nakamaru-Ogiso E.,University of Pennsylvania | Kannabiran C.,LV Prasad Eye Institute LVPEI | And 42 more authors.
Nature Genetics | Year: 2012

Leber congenital amaurosis (LCA) is an infantile-onset form of inherited retinal degeneration characterized by severe vision loss. Two-thirds of LCA cases are caused by mutations in 17 known disease-associated genes (Retinal Information Network (RetNet)). Using exome sequencing we identified a homozygous missense mutation (c.25G>A, p.Val9Met) in NMNAT1 that is likely to be disease causing in two siblings of a consanguineous Pakistani kindred affected by LCA. This mutation segregated with disease in the kindred, including in three other children with LCA. NMNAT1 resides in the previously identified LCA9 locus and encodes the nuclear isoform of nicotinamide mononucleotide adenylyltransferase, a rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD+) biosynthesis. Functional studies showed that the p.Val9Met alteration decreased NMNAT1 enzyme activity. Sequencing NMNAT1 in 284 unrelated families with LCA identified 14 rare mutations in 13 additional affected individuals. These results are the first to link an NMNAT isoform to disease in humans and indicate that NMNAT1 mutations cause LCA. © 2012 Nature America, Inc. All rights reserved.


Sahel J.-A.,Paris-Sorbonne University | Sahel J.-A.,French Institute of Health and Medical Research | Sahel J.-A.,French National Center for Scientific Research | Sahel J.-A.,Rothschild | And 9 more authors.
Cold Spring Harbor Perspectives in Medicine | Year: 2015

Inherited retinal degenerations (IRDs) encompass a large group of clinically and genetically heterogeneous diseases that affect approximately 1 in 3000 people (>2 million people worldwide) (Bessant DA, Ali RR, Bhattacharya SS. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11: 307-316.). IRDs may be inherited as Mendelian traits or through mitochondrial DNA, and mayaffect the entire retina (e.g., rod-cone dystrophy, also known as retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, choroideremia, Usher syndrome, and Bardet-Bidel syndrome) or be restricted to the macula (e.g., Stargardt disease, Best disease, and Sorsby fundus dystrophy), ultimately leading to blindness. IRDs are a major cause of severe vision loss, with profound impact on patients and society. Although IRDs remain untreatable today, significant progress toward therapeutic strategies for IRDs has marked the past two decades. This progress has been based on better understanding of the pathophysiological pathways of these diseases and on technological advances. © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.


Orhan E.,French Institute of Health and Medical Research | Orhan E.,French National Center for Scientific Research | Orhan E.,University Pierre and Marie Curie | Prezeau L.,Montpellier University | And 30 more authors.
Investigative Ophthalmology and Visual Science | Year: 2013

Purpose. Mutations in GPR179, which encodes the G protein-coupled receptor 179, lead to autosomal recessive complete (c) congenital stationary night blindness (CSNB), which is characterized by an ON-bipolar retinal cell dysfunction. This study further defined the exact site of Gpr179 expression and its protein localization in human retina and elucidated the pathogenic mechanism of the reported missense and splice site mutations. Methods. RNA in situ hybridization was performed with mouse retinal sections. A commercially available antibody was validated with GPR179-overexpressing COS-1 cells and applied to human retinal sections. Live-cell extracellular staining along with subsequent intracellular immunolocalization and ELISA studies were performed using mammalian cells overexpressing wild-type or missense mutated GPR179. Wild-type and splice site-mutated mini-gene constructs were transiently transfected, and RNA was extracted. RT-PCR-amplified products were cloned, and Sanger sequenced. Results. Mouse Gpr179 transcript was expressed in the upper part of the inner nuclear layer, and the respective human protein localized at the dendritic tips of bipolar cells in human retina. The missense mutations p.Tyr220Cys, p.Gly455Asp, and p.His603Tyr led to severely reduced cell surface localization, whereas p.Asp126His did not. The mutated splice donor site altered GPR179 splicing. Conclusions. Our findings indicate that the site of expression and protein localization of human and mouse GPR179 is similar to that of other proteins implicated in cCSNB. For most of the mutations identified so far, loss of the GPR179 protein function seems to be the underlying pathogenic mechanism leading to this form of cCSNB. © 2013 The Association for Research in Vision and Ophthalmology, Inc.


Audo I.,French Institute of Health and Medical Research | Audo I.,French National Center for Scientific Research | Audo I.,University Pierre and Marie Curie | Audo I.,University College London | And 35 more authors.
Orphanet Journal of Rare Diseases | Year: 2012

Background: Inherited retinal disorders are clinically and genetically heterogeneous with more than 150 gene defects accounting for the diversity of disease phenotypes. So far, mutation detection was mainly performed by APEX technology and direct Sanger sequencing of known genes. However, these methods are time consuming, expensive and unable to provide a result if the patient carries a new gene mutation. In addition, multiplicity of phenotypes associated with the same gene defect may be overlooked. Methods. To overcome these challenges, we designed an exon sequencing array to target 254 known and candidate genes using Agilent capture. Subsequently, 20 DNA samples from 17 different families, including four patients with known mutations were sequenced using Illumina Genome Analyzer IIx next-generation-sequencing (NGS) platform. Different filtering approaches were applied to identify the genetic defect. The most likely disease causing variants were analyzed by Sanger sequencing. Co-segregation and sequencing analysis of control samples validated the pathogenicity of the observed variants. Results: The phenotype of the patients included retinitis pigmentosa, congenital stationary night blindness, Best disease, early-onset cone dystrophy and Stargardt disease. In three of four control samples with known genotypes NGS detected the expected mutations. Three known and five novel mutations were identified in NR2E3, PRPF3, EYS, PRPF8, CRB1, TRPM1 and CACNA1F. One of the control samples with a known genotype belongs to a family with two clinical phenotypes (Best and CSNB), where a novel mutation was identified for CSNB. In six families the disease associated mutations were not found, indicating that novel gene defects remain to be identified. Conclusions: In summary, this unbiased and time-efficient NGS approach allowed mutation detection in 75% of control cases and in 57% of test cases. Furthermore, it has the possibility of associating known gene defects with novel phenotypes and mode of inheritance. © 2012 Audo et al; licensee BioMed Central Ltd.


Fort P.E.,French Institute of Health and Medical Research | Fort P.E.,University of Michigan | Darche M.,French Institute of Health and Medical Research | Sahel J.-A.,French Institute of Health and Medical Research | And 7 more authors.
Molecular Vision | Year: 2014

Purpose: Dp71 is the main product of the Duchenne muscular dystrophy (DMD) gene in the central nervous system. While studying the impact of its absence on retinal functions, we discovered that mice lacking Dp71 also developed a progressive opacification of the crystalline lens. The purpose of this study was to perform a detailed characterization of the cataract formation in Dp71 knockout (KO-Dp71) mice.Methods: Cataract formations in KO-Dp71 mice and wild-type (wt) littermates were assessed in vivo by slit-lamp examination and ex vivo by histological analysis as a function of aging. The expression and cellular localization of the DMD gene products were monitored by western blot and immunohistochemical analysis. Fiber cell integrity was assessed by analyzing the acting cytoskeleton as well as the expression of aquaporin-0 (AQP0).Results: As expected, a slit-lamp examination revealed that only one of the 20 tested wt animals presented with a mild opacification of the lens and only at the most advanced age. However, a lack of Dp71 was associated with a 40% incidence of cataracts as early as 2 months of age, which progressively increased to full penetrance by 7 months. A subsequent histological analysis revealed an alteration in the structures of the lenses of KO-Dp71 mice that correlated with the severity of the lens opacity. An analysis of the expression of the different dystrophin gene products revealed that Dp71 was the major DMD gene product expressed in the lens, especially in fiber cells. The role of Dp71 in fiber cells was also suggested by the progressive disorganization of the lens fibers, which was observed in the absence of Dp71 and demonstrated by irregular staining of the acting network and the aqueous channel AQP0.Conclusions: While its role in the retina has been well characterized, this study demonstrates for the first time the role played by Dp71 in a different ocular tissue: the crystalline lens. It primarily demonstrates the role that Dp71 plays in the maintenance of the integrity of the secondary lens fibers. © 2014 Molecular Vision.


Vacca O.,French Institute of Health and Medical Research | Darche M.,French Institute of Health and Medical Research | Schaffer D.V.,University of California at Berkeley | Flannery J.G.,University of California at Berkeley | And 6 more authors.
GLIA | Year: 2014

Formation and maintenance of the blood-retinal barrier (BRB) is required for proper vision and breaching of this barrier contributes to the pathology in a wide variety of retinal conditions such as retinal detachment and diabetic retinopathy. Dystrophin Dp71 being a key membrane cytoskeletal protein, expressed mainly in Müller cells, its absence has been related to BRB permeability through delocalization and down-regulation of the AQP4 and Kir4.1 channels. Dp71-null mouse is thus an excellent model to approach the study of retinal pathologies showing blood-retinal barrier permeability. We aimed to investigate the participation of Müller cells in the BRB and in the inner limiting membrane of Dp71-null mice compared with wild-type mice in order to understand how these barriers work in this model of permeable BRB. To this aim, we used an Adeno-associated virus (AAV) variant, ShH10-GFP, engineered to target Müller cells specifically. ShH10 coding GFP was introduced by intravitreal injection and Müller cell transduction was studied in Dp71-null mice in comparison to wild-type animals. We show that Müller cell transduction follows a significantly different pattern in Dp71-null mice indicating changes in viral cell-surface receptors as well as differences in the permeability of the inner limiting membrane in this mouse line. However, the compromised BRB of the Dp71-null mice does not lead to virus leakage into the bloodstream when the virus is injected intravitreally - an important consideration for AAV-mediated retinal gene therapy. © 2013 Wiley Periodicals, Inc.

Loading Academie Des Science Institute Of France collaborators
Loading Academie Des Science Institute Of France collaborators