Beijing, China
Beijing, China

Time filter

Source Type

Patent
Academia Sinica, China | Date: 2016-08-10

Disclosed herein are phage-displayed single-chain variable fragment (scFv) libraries, which comprised a plurality of scFvs with a specific sequence in each CDR. The present scFv libraries could be used to efficiently produce different antibodies with high binding affinity to H1 hemagglutinin of influenza virus. Accordingly, the present disclosure provides a potential means to generate different antigen-specific antibodies promptly in accordance with the need in experimental researches and/or clinical applications.


Patent
Academia Sinica, China | Date: 2016-08-18

Disclosed herein are methods for treating spinal cord injury using recombinant decoy receptor 3 (DcR3) polypeptide. Also disclosed herein are methods for improving the locomotor function recovery of a spinal cord injured subject with a DcR3 polypeptide.


Patent
City Of Hope, Taipei Medical University and Academia Sinica, China | Date: 2016-02-11

Provided herein, inter alia, are compound and methods of treating cancer by inhibiting HDAC8.


Patent
Academia Sinica, China | Date: 2016-09-12

Apparatuses and methods for supercontinuum generation using a laser beam and a plurality of condensed state transparent plates are presented. As an example, plate material to be used for one of the plurality of plates is determined. A thickness of the one of the plurality of plates is also determined. An allowable laser intensity of the laser beam is then determined to be /(2n_(0)n_(2)L), where is the central incident wavelength in vacuum, n_(0 )is the linear refractive index, n_(2 )is the third-order nonlinear coefficient. A location of a next plate is then determined to be a distance downstream from the one of the plurality of plates where a laser intensity of the laser beam returns to a value of the determined allowable laser intensity.


Patent
Academia Sinica, China | Date: 2017-03-22

Apparatuses and methods for supercontinuum generation using a laser beam and a plurality of condensed state transparent plates are presented. As an example, plate material to be used for one of the plurality of plates is determined. A thickness of the one of the plurality of plates is also determined. An allowable laser intensity of the laser beam is then determined to be /(2n_(0)n_(2)L), where is the central incident wavelength in vacuum, no is the linear refractive index, n_(2) is the third-order nonlinear coefficient. A location of a next plate is then determined to be a distance downstream from the one of the plurality of plates where a laser intensity of the laser beam returns to a value of the determined allowable laser intensity.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-32-2014 | Award Amount: 3.96M | Year: 2015

Online banking, e-commerce, telemedicine, mobile communication, and cloud computing depend fundamentally on the security of the underlying cryptographic algorithms. Public-key algorithms are particularly crucial since they provide digital signatures and establish secure communication without requiring in-person meetings. Essentially all applications today are based on RSA or on the discrete-logarithm problem in finite fields or on elliptic curves. Cryptographers optimize parameter choices and implementation details for these systems and build protocols on top of these systems; cryptanalysts fine-tune attacks and establish exact security levels for these systems. Alternative systems are far less visible in research and unheard of in practice. It might seem that having three systems offers enough variation, but these systems are all broken as soon as large quantum computers are built. The EU and governments around the world are investing heavily in building quantum computers; society needs to be prepared for the consequences, including cryptanalytic attacks accelerated by these computers. Long-term confidential documents such as patient health-care records and state secrets have to guarantee security for many years, but information encrypted today using RSA or elliptic curves and stored until quantum computers are available will then be as easy to decipher as Enigma-encrypted messages are today. PQCRYPTO will allow users to switch to post-quantum cryptography: cryptographic systems that are not merely secure for today but that will also remain secure long-term against attacks by quantum computers. PQCRYPTO will design a portfolio of high-security post-quantum public-key systems, and will improve the speed of these systems, adapting to the different performance challenges of mobile devices, the cloud, and the Internet of Things. PQCRYPTO will provide efficient implementations of high-security post-quantum cryptography for a broad spectrum of real-world applications.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EINFRA-1-2014 | Award Amount: 8.65M | Year: 2015

Over the last decade, the European Grid Infrastructure (EGI) has built a distributed computing and data infrastructure to support over 21,000 researchers from many disciplines with unprecedented data analysis capabilities. EGI builds on the European and national investments and relies on the expertise of EGI.eu - a not-for-profit foundation that provides coordination to the EGI Community, including user groups, EGI.eu participants in the EGI Council, and the other collaborating partners. The mission of EGI-Engage is to accelerate the implementation of the Open Science Commons vision, where researchers from all disciplines have easy and open access to the innovative digital services, data, knowledge and expertise they need for their work. The Open Science Commons is grounded on three pillars: the e-Infrastructure Commons, an ecosystem of key services; the Open Data Commons, where any researcher can access, use and reuse data; and the Knowledge Commons, in which communities have shared ownership of knowledge and participate in the co-development of software and are technically supported to exploit state-of-the-art digital services. EGI-Engage will expand the capabilities offered to scientists (e.g. improved cloud or data services) and the spectrum of its user base by engaging with large Research Infrastructures (RIs), the long-tail of science and industry/SMEs. The main engagement instrument will be a network of eight Competence Centres, where National Grid Initiatives (NGIs), user communities, technology and service providers will join forces to collect requirements, integrate community-specific applications into state-of-the-art services, foster interoperability across e-Infrastructures, and evolve services through a user-centric development model. The project will also coordinate the NGI efforts to support the long-tail of science by developing ad hoc access policies and by providing services and resources that will lower barriers and learning curves.


The present disclosure relates to compositions and methods of use comprising antibodies or binding fragments thereof further comprising universal Fc glycoforms.


Patent
Academia Sinica, China | Date: 2016-01-30

Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to globo H, SSEA3, and SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, skin, bone, lungs, breast, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervical, ovarian, and/or prostate cancer.


Patent
Academia Sinica, China | Date: 2016-05-17

Described herein is an engineered Kluyveromyces marxianus cell, the cell comprising in its genome: (i) two different nucleic acid molecules that each contain a promoter operably linked to a gene encoding a functional enzyme, and (ii) a selection nucleic acid molecule that contains a promoter operably linked to a gene encoding a selectable marker, wherein all of the nucleic acids molecules of (i) and (ii) are in tandem and the engineered cell expresses all of the proteins encoded by the genes of (i) and (ii).

Loading Academia Sinica, China collaborators
Loading Academia Sinica, China collaborators