Time filter

Source Type

Anchorage, AK, United States

Gall A.E.,ABR Inc. Environmental Research and Services | Day R.H.,ABR Inc. Environmental Research and Services | Weingartner T.J.,University of Alaska Fairbanks
Continental Shelf Research | Year: 2013

We examined the seasonal and interannual variation in the marine-bird community and its relationship to physical oceanography in the northeastern Chukchi Sea in 2008-2010 as part of a multi-year, interdisciplinary study. We sampled 3 study areas, each ~3000km2, located in the offshore northeastern Chukchi Sea: Klondike, Burger, and Statoil. We quantified the marine habitat by measuring strength of stratification, depth of the mixed layer, and temperature and salinity in the upper mixed layer. The total density of seabirds was the highest in 2009, when warm (5-6°C), moderately saline (31-31.5) Bering Sea Water (BSW) extended across Burger and Klondike at all depths. Bird density was generally higher in Klondike than in Burger in 2008 and 2009; densities did not differ significantly among study areas in 2010, when BSW covered all 3 study areas. The relative abundance of alcids in all study areas combined increased from 2008 to 2010. Klondike was numerically dominated by alcids and tubenoses in all years, whereas Burger was numerically dominated by larids and tubenoses in 2008 and by alcids in 2009 and 2010; Statoil also was numerically dominated by alcids in 2010. Least auklets, crested auklets, and northern fulmars were positively associated with strong stratification and high salinity (>31) in the upper mixed layer, characteristics that indicated the presence of BSW. Phalaropes were positively associated with salinity but negatively associated with stratification, suggesting that well-mixed water provides better foraging opportunities for these surface-feeding planktivores. The distribution and abundance of marine birds, particularly the planktivorous species, is influenced by advective processes that transport oceanic species of zooplankton from the Bering Sea to the Chukchi Sea. This transport apparently differed among years and resulted in a broader northeastward intrusion of Bering Sea Water and greater total abundance of planktivorous seabirds in the region in 2009 than in 2008 or 2010. © 2012 Elsevier Ltd.

Miller M.P.,U.S. Geological Survey | Haig S.M.,U.S. Geological Survey | Mullins T.D.,U.S. Geological Survey | Ruan L.,U.S. Geological Survey | And 11 more authors.
Evolutionary Applications | Year: 2015

Waterfowl (Anseriformes) and shorebirds (Charadriiformes) are the most common wild vectors of influenza A viruses. Due to their migratory behavior, some may transmit disease over long distances. Migratory connectivity studies can link breeding and nonbreeding grounds while illustrating potential interactions among populations that may spread diseases. We investigated Dunlin (Calidris alpina), a shorebird with a subspecies (C. a. arcticola) that migrates from nonbreeding areas endemic to avian influenza in eastern Asia to breeding grounds in northern Alaska. Using microsatellites and mitochondrial DNA, we illustrate genetic structure among six subspecies: C. a. arcticola, C. a. pacifica, C. a. hudsonia, C. a. sakhalina, C. a. kistchinski, and C. a. actites. We demonstrate that mitochondrial DNA can help distinguish C. a. arcticola on the Asian nonbreeding grounds with >70% accuracy depending on their relative abundance, indicating that genetics can help determine whether C. a. arcticola occurs where they may be exposed to highly pathogenic avian influenza (HPAI) during outbreaks. Our data reveal asymmetric intercontinental gene flow, with some C. a. arcticola short-stopping migration to breed with C. a. pacifica in western Alaska. Because C. a. pacifica migrates along the Pacific Coast of North America, interactions between these subspecies and other taxa provide route for transmission of HPAI into other parts of North America. © 2014 The Authors.

Aerts L.A.M.,LAMA Ecological | McFarland A.E.,Fairweather LLC | Watts B.H.,Fairweather LLC | Lomac-MacNair K.S.,Northern Exploration Services LLC | And 4 more authors.
Continental Shelf Research | Year: 2013

This paper describes the distribution and abundance of marine mammals during the open-water season within and near three offshore oil and gas prospects in the northeastern Chukchi Sea, known as the Klondike, Burger, and Statoil study areas. We collected vessel-based marine mammal data during July-October 2008-2010 along line transects oriented in a north-south direction. Over this period, we surveyed ~18,600. km of on-transect effort in the three study areas. Sightings of cetaceans were rare. The bowhead whale was the primary cetacean species sighted and was mostly observed in October (33 of 35 animals). Pinnipeds were the most abundant marine mammals in the study area, with 980 seals and 367 walruses recorded on transect. Most seals were observed as solitary animals, while walruses were often observed in aggregations. We calculated seal and walrus densities using species-specific detection functions corrected for probability of detection. There was high interannual variability in the abundance of seals and walruses that for some species may be related to interannual differences in ice conditions. Notwithstanding this variation, the distribution data suggest that benthic-feeding bearded seals and walruses generally were more common in the Burger and Statoil study areas, which can be characterized as more benthic-dominated ecosystems. The distribution of ringed/spotted seals did not show any statistically significant differences among the study areas, although a slight preference for the Klondike and Statoil study areas was suggested. Both of these study areas are affected by Bering Sea Water from the Central Channel and have a stronger pelagic component than the Burger study area. Continued sampling of these areas will help establish whether the observed trends in marine mammal distribution and abundance are persistent. © 2013 Elsevier Ltd.

Gates H.R.,U.S. Fish and Wildlife Service | Gates H.R.,University of Alaska Fairbanks | Gates H.R.,ABR Inc. Environmental Research and Services | Yezerinac S.,Mount Allison University | And 5 more authors.
Journal of Field Ornithology | Year: 2013

Five subspecies of Dunlins (Calidris alpina) that breed in Beringia are potentially sympatric during the non-breeding season. Studying their ecology during this period requires techniques to distinguish individuals by subspecies. Our objectives were to determine (1) if five morphometric measures (body mass, culmen, head, tarsus, and wing chord) differed between sexes and among subspecies (C. a. actites, arcticola, kistchinski, pacifica, and sakhalina), and (2) if these differences were sufficient to allow for correct classification of individuals using equations derived from discriminant function analyses. We conducted analyses using morphometric data from 10 Dunlin populations breeding in northern Russia and Alaska, USA. Univariate tests revealed significant differences between sexes in most morphometric traits of all subspecies, and discriminant function equations predicted the sex of individuals with an accuracy of 83-100% for each subspecies. We provide equations to determine sex and subspecies of individuals in mixed subspecies groups, including the (1) Western Alaska group of arcticola and pacifica (known to stage together in western Alaska) and (2) East Asia group of arcticola, actites, kistchinski, and sakhalina (known to winter together in East Asia). Equations that predict the sex of individuals in mixed groups had classification accuracies between 75% and 87%, yielding reliable classification equations. We also provide equations that predict the subspecies of individuals with an accuracy of 22-96% for different mixed subspecies groups. When the sex of individuals can be predetermined, the accuracy of these equations is increased substantially. Investigators are cautioned to consider limitations due to age and feather wear when using these equations during the non-breeding season. These equations will allow determination of sexual and subspecies segregation in non-breeding areas, allowing implementation of taxonomic-specific conservation actions. © 2013 The Authors. Journal of Field Ornithology © 2013 Association of Field Ornithologists.

Day R.H.,ABR Inc. Environmental Research and Services | Weingartner T.J.,University of Alaska Fairbanks | Weingartner T.J.,National Oceanic and Atmospheric Administration | Hopcroft R.R.,University of Alaska Fairbanks | And 11 more authors.
Continental Shelf Research | Year: 2013

We conducted an interdisciplinary ecological study in and near 3 nearby proposed exploratory oil and gas prospects in the offshore northeastern Chukchi Sea during the open-water seasons of 2008-2010. This region exhibits a classical pelagic-benthic dichotomy of food-web structure in ecological function. The Klondike study area borders the eastern edge of the Central Channel and functions as a pelagic-dominated ecosystem, whereas the Burger study area lies south of Hanna Shoal and functions as a benthic-dominated ecosystem. The Statoil study area, which is located north of Klondike and northwest of Burger, has both pelagic and benthic attributes, although it is more like Burger than like Klondike. Klondike has lower benthic density and biomass, a higher biomass of oceanic zooplankton, and more fishes and planktivorous seabirds than does Burger, which has benthic communities with high density and biomass, primarily neritic zooplankton, and higher densities of benthic-feeding marine mammals than Klondike; Statoil has characteristics of both ecosystems. Patterns of sea-ice retreat vary interannually; in some years, much of the northeastern Chukchi is ice-free by mid-May, leading to pelagic and ice-edge phytoplankton blooms, whereas heavy ice cover in other years leads to substantial within-ice production. The characteristics of this region during the open-water season are not consistent among years, in that Bering Sea Water impinges onto all study areas only in some years, resulting in interannual variation in the distribution and abundance of zooplankton, planktivorous seabirds, and pelagic-feeding seals. These interannual variations alter several aspects of this pelagic-benthic dichotomy, and some aspects of this region suggest unusual structure (e.g., replacement of benthic-feeding fishes in some areas by predatory invertebrates, a lack of benthic-feeding seaducks). © 2013 Elsevier Ltd.

Discover hidden collaborations