Time filter

Source Type

Darmstadt, Germany

Reinwarth M.,TU Darmstadt | Avrutina O.,TU Darmstadt | Fabritz S.,AB Sciex Germany GmbH | Kolmar H.,TU Darmstadt

Over the last decades the field of pharmaceutically relevant peptides has enormously expanded. Among them, several peptide families exist that contain three or more disulfide bonds. In this context, elucidation of the disulfide patterns is extremely important as these motifs are often prerequisites for folding, stability, and activity. An example of this structure-determining pattern is a cystine knot which comprises three constrained disulfide bonds and represents a core element in a vast number of mechanically interlocked peptidic structures possessing different biological activities. Herein, we present our studies on disulfide pattern determination and structure elucidation of cystine-knot miniproteins derived from Momordica cochinchinensis peptide MCoTI-II, which act as potent inhibitors of human matriptase-1. A top-down mass spectrometric analysis of the oxidised and bioactive peptides is described. Following the detailed sequencing of the peptide backbone, interpretation of the MS3spectra allowed for the verification of the knotted topology of the examined miniproteins. Moreover, we found that the fragmentation pattern depends on the knottin's folding state, hence, tertiary structure, which to our knowledge has not been described for a top-down MS approach before. © 2014 Reinwarth et al. Source

Timm T.,Justus Liebig University | Lenz C.,Max Planck Institute for Biophysical Chemistry | Lenz C.,University of Gottingen | Merkel D.,AB Sciex Germany GmbH | And 4 more authors.
Journal of the American Society for Mass Spectrometry

Phosphorylcholine (PC)-modified biomolecules like lipopolysaccharides, glycosphingolipids, and (glyco)proteins are widespread, highly relevant antigens of parasites, since this small hapten shows potent immunomodulatory capacity, which allows the establishment of long-lasting infections of the host. Especially for PC-modified proteins, structural data is rare because of the zwitterionic nature of the PC substituent, resulting in low sensitivities and unusual but characteristic fragmentation patterns. We have developed a targeted mass spectrometric approach using hybrid triple quadrupole/linear ion trap (QTRAP) mass spectrometry coupled to nanoflow chromatography for the sensitive detection of PC-modified peptides from complex proteolytic digests, and the localization of the PC-modification within the peptide backbone. In a first step, proteolytic digests are screened using precursor ion scanning for the marker ions of choline (m/z 104.1) and phosphorylcholine (m/z 184.1) to establish the presence of PC-modified peptides. Potential PC-modified precursors are then subjected to a second analysis using multiple reaction monitoring (MRM)-triggered product ion spectra for the identification and site localization of the modified peptides. The approach was first established using synthetic PC-modified synthetic peptides and PC-modified model digests. Following the optimization of key parameters, we then successfully applied the method to the detection of PC-peptides in the background of a proteolytic digest of a whole proteome. This methodological invention will greatly facilitate the detection of PC-substituted biomolecules and their structural analysis. [Figure not available: see fulltext.] © 2014 American Society for Mass Spectrometry. Source

Szewczyk R.,University of Lodz | Sobon A.,University of Lodz | Sylwia R.,University of Lodz | Dzitko K.,University of Lodz | And 2 more authors.
International Biodeterioration and Biodegradation

4-n-nonylphenol (4-n-NP) is an endocrine disrupting compound (EDC); pollutants that cause serious disturbances in the environment. This study shows the degradation pathway and initial proteome analysis in cultures of a fungus that actively degrades 4-n-NP, Metarhizium robertsii. The research revealed the presence of 14 4-n-NP metabolites formed as a result of the oxidation of the alkyl chain and benzene ring, which leads to the complete decomposition of the compound. Based on the trend and quantitative analysis of the formation of 4-n-NP derivatives, the best conditions for proteome analysis were established. The data collected allowed the formulation of an explanation of the microorganism's strategy towards the removal of 4-n-NP. The main groups of proteins engaged in the removal of the xenobiotic are: oxidation-reduction systems related to nitroreductase-like proteins, ROS defense systems (peroxiredoxin and superoxide dismutase), the TCA cycle and energy-related systems. Principal components analysis was applied to unidentified proteins, resulting in the formulation of three subgroups and initial classification of these proteins. © 2014 Elsevier Ltd. Source

Simm S.,Goethe University Frankfurt | Papasotiriou D.G.,Goethe University Frankfurt | Papasotiriou D.G.,Hill International | Ibrahim M.,Goethe University Frankfurt | And 9 more authors.
Frontiers in Plant Science

High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided. © 2013 Simm, Papasotiriou, Ibrahim, Leisegang, Müller, Schorge, Karas, Mirus, Sommer and Schleiff. Source

Lehmann S.,Institut Universitaire de France | Hoofnagle A.,University of Washington | Hochstrasser D.,University of Geneva | Brede C.,University of Stavanger | And 7 more authors.
Clinical Chemistry and Laboratory Medicine

Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using pro teomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in ' functional ' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteo mics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP). Source

Discover hidden collaborations