Time filter

Source Type

Espoo, Finland

Aalto University is a university primarily located in Greater Helsinki, Finland. It was created as a merger of three leading Finnish universities: the Helsinki University of Technology , the Helsinki School of Economics , and the University of Art and Design Helsinki . The close collaboration between the scientific, business and arts communities is intended to foster multi-disciplinary education and research. The Finnish government, in 2010, set out to create a university that has innovation built into its foundations, merging three institutions into one along the way, forming an entity that serves as Finland's model for an innovation university.It comprises six schools with over 19,000 students and 5,000 staff members, thus being Finland's third-largest university. The six schools of Aalto University are all renowned institutions in their respective fields. The main campus of Aalto University is located in Otaniemi, Espoo, where the engineering schools operate, with two schools currently headquartered in Helsinki: the School of Business in Töölö and the School of Arts, Design and Architecture in Arabianranta . In addition, the university operates several units outside Greater Helsinki in Mikkeli, Pori and Vaasa.Aalto university's operations showcase Finland’s bold new experiment in higher education. The Aalto Design Factory, AppCampus, ADD LAB and Aalto Ventures Program, among others, drive the university's mission for a radical shift towards multidisciplinary learning and have contributed substantially to the emergence of Helsinki as a hotbed for startups. Aaltoes, which stands for Aalto Entrepreneurship Society, is Europe’s largest student run entrepreneurship community and organises the Startup Sauna accelerator program for startups, raising more than US$36 million in funding since 2010.The university is named in honour of Alvar Aalto, a prominent Finnish architect, designer and alumnus of the former Helsinki University of Technology, who was also instrumental in designing a large part of the university's main campus in Otaniemi. Wikipedia.

The invention concerns an anatomically personalized and mobilizing external support configured to be arranged to support a physical joint between a first and a second bone group, which support comprises at least one first external auxiliary frame, which is configured to be attached to the first bone group using invasive attachment means, at least one second external auxiliary frame, which is configured to be attached to the second bone group using invasive attachment means, and at least one external auxiliary joint, which is fitted between the first and the second auxiliary frame. The external support is configured to permit a rotation of the second external auxiliary frame relative to the first external auxiliary frame about a rotational axis, sliding of the rotational axis relative to the first external auxiliary frame in a first direction, and sliding of the rotational axis or at least a portion of the second external auxiliary frame relative to the first external auxiliary frame in a second direction, which differs from the first direction.

The present invention concerns a method for functionalization, via topographical modification, of the surfaces of nanofibrillated (NFC) cellulose films into non-porous, water-resistant platforms, usable in diagnostic applications. The method includes a carboxylation of the NFC-film via TEMPO-mediated oxidation, and optionally an activation via EDS/NHS chemistry and, finally, the reactivity of the film can be tested using anti-human IgG. The invention also concerns the thus prepared functionalized NFC films, as well as the use thereof as platforms for diagnostical assays.

Aalto University and University of Helsinki | Date: 2014-04-04

A method of manufacturing a cellulose-based shaped article. The method comprises subjecting a solution of lignocellulosic material, dissolved in a distillable ionic liquid, to a spinning method, wherein the ionic liquid is a diazabicyclononene (DBN)-based ionic liquid. DBN-based ionic liquids have good dissolution power, high thermal and chemical stability, lack runaway reactions and exhibit low energy consumption, due to low spinning temperatures. The shaped cellulose articles can be used as textile fibres, high-end non-woven fibres, technical fibres, films for packaging, and barriers films in batteries, as membranes and as carbon-fibre precursors.

Aalto University | Date: 2013-03-07

The present invention concerns a fodder containing at least one type of grain crop, and a process for its manufacture, in which fodder the contents and identities of high-energy components have been optimized, whereby the main component in the fodder, in addition to the grain crop, is microcellulose, most suitably having a narrow particle size distribution, which microcellulose has been found to be digested in a particularly advantageous manner in the stomach of an animal, particularly the rumen of a ruminant, such as a cow.

Aalto University | Date: 2014-04-08

The present invention relates to a method for manufacturing a biofuel from a vegetable-based biomaterial by performing the manufacture in an integrated manner, in such a way that the biomaterial is made finer and dried with the aid of heat brought from a heat-releasing process, when the drying is finally performed after the finer making stage, optionally in such a way that drying is started already in connection with finer making. The invention also relates to a biofuel manufactured in this manner and the use of the fuel in question.

Discover hidden collaborations