Time filter

Source Type

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: ENV.2010.1.1.5-1 | Award Amount: 4.82M | Year: 2011

Increases of atmospheric CO2 and associated decreases in seawater pH and carbonate ion concentration this century and beyond are likely to have wide impacts on marine ecosystems including those of the Mediterranean Sea. Consequences of this process, ocean acidification, threaten the health of the Mediterranean, adding to other anthropogenic pressures, including those from climate change. Yet in comparison to other areas of the world ocean, there has been no concerted effort to study Mediterranean acidification, which is fundamental to the social and economic conditions of more than 130 million people living along its coastlines and another 175 million who visit the region each year. The MedSeA project addresses ecologic and economic impacts from the combined influences of anthropogenic acidification and warming, while accounting for the unique characteristics of this key region. MedSeA will forecast chemical, climatic, ecological-biological, and socio-economical changes of the Mediterranean driven by increases in CO2 and other greenhouse gases, while focusing on the combined impacts of acidification and warming on marine shell and skeletal building, productivity, and food webs. We will use an interdisciplinary approach involving biologists, earth scientists, and economists, through observations, experiments, and modelling. These experts will provide science-based projections of Mediterranean acidification under the influence of climate change as well as associated economic impacts. Projections will be based on new observations of chemical conditions as well as new observational and experimental data on the responses of key organisms and ecosystems to acidification and warming, which will be fed into existing ocean models that have been improved to account for the Mediterraneans fine-scale features. These scientific advances will allow us to provide the best advice to policymakers who must develop regional strategies for adaptation and mitigation.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENV.2012.6.2-3 | Award Amount: 12.05M | Year: 2012

The objectives are to: (i) improve our understanding of human activities impacts (cumulative, synergistic, antagonistic) and variations due to climate change on marine biodiversity, using long-term series (pelagic and benthic). This objective will identify the barriers and bottlenecks (socio-economic and legislative) that prevent the GES being achieved (ii) test the indicators proposed by the EC, and develop new ones for assessment at species, habitats and ecosystems level, for the status classification of marine waters, integrating the indicators into a unified assessment of the biodiversity and the cost-effective implementation of the indicators (i.e. by defining monitoring and assessment strategies). This objective will allow for the adaptive management including (a) strategies & measures, (b) the role of industry and relevant stakeholders (including non-EU countries), and (c) provide an economic assessment of the consequences of the management practices proposed. It will build on the extensive work carried out by the Regional Seas Conventions (RSC) and Water Framework Directive, in which most of the partners have been involved (iii) develop/test/validate innovative integrative modelling tools to further strengthen our understanding of ecosystem and biodiversity changes (space & time); such tools can be used by statutory bodies, SMEs and marine research institutes to monitor biodiversity, applying both empirical and automatic data acquisition. This objective will demonstrate the utility of innovative monitoring systems capable of efficiently providing data on a range of parameters (including those from non-EU countries), used as indicators of GES, and for the integration of the information into a unique assessment The consortium has 23 partners, including 4 SMEs (close to 17% of the requested budget) and 2 non-EU partners (Ukraine & Saudi Arabia). Moreover, an Advisory Board (RSC & scientific international scientists) has been designed,to ensure a good relationship with stakeholders

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENERGY.2009.3.2.2 | Award Amount: 4.08M | Year: 2010

The Biowalk4Biofuels Project aims to develop an alternative and innovative system for biowaste energy recovery and use of GHG emissions to produce biofuels, using macroalgae as a catalyser, in a multidisciplinary approach. The objectives of the project are: production of a cost-efficient biogas without using cereal crops; optimise the production of biogas per amount of biowaste and CO2 used, with low land use for plant facilities; and increase and optimize the types of biowastes that can be utilised for biogas production. To achieve the underlined objectives, research activities are to be carried out on the selection of adequate macroalgae species that can reach high output biomass yields and high carbohydrate content. Pre-cultivation of protoplasts will allow to obtain easily available biomass for feeding the cultivation open floating ponds within shorter periods, thanks to the rapid proliferation of germplasm, diminishing the life-cycle of macroalgae. In addition, the relationship between growth and energy potential of selected species with the amounts/characteristic of GHG emissions and biowaste introduced in the cultivation medium is to be studied. . After fermenting the algal biomass and other biowastes, the cycle is closed by producing biogas to be used for electricity and heat generation and as a transport fuel. A high quality biogas is expected, hence a purification step will proceed the final product. Furthermore, organic residues output from the methanation biodigestor are to be used as fertilizer after solid/liquid separation. The liquid fraction of the digestate will be treated in a biological oxidation system .A portion of the unseparated outlet effluent from the oxidation system (solids \ liquid) will be fed to the macroalgae cultivation (instead of the enrichment with chemical N-P-K fertilizers). Meanwhile, the other portion will be reused as feeding for the AD plant section. This process solution will permit to feed with several critical biowastes the biodigester, transforming them into a resource. The expected impact is to produce a cost-efficient, low energy-intensive, purified biogas, to reduce negative environmental impacts from industry (GHG emissions) and biowaste. The multidisciplinary approach solution to reduce GHG emission and process biowaste, while producing energy, seeking for the future replications in other locations.

Agency: Cordis | Branch: FP7 | Program: CP-IP-SICA | Phase: OCEAN.2011-4 | Award Amount: 11.32M | Year: 2012

Environmental policies focus on protecting habitats valuable for their biodiversity, as well as producing energy in cleaner ways. The establishment of Marine Protected Area (MPA) networks and installing Offshore Wind Farms (OWF) are important ways to achieve these goals. The protection and management of marine biodiversity has focused on placing MPAs in areas important for biodiversity. This has proved successful within the MPAs, but had little impact beyond their boundaries. In the highly populated Mediterranean and the Black Seas, bordered by many range states, the declaration of extensive MPAs is unlikely at present, so limiting the bearing of protection. The establishment of MPAs networks can cope with this obstacle but, to be effective, such networks must be based on solid scientific knowledge and properly managed (not merely paper parks). OWF, meanwhile, must be placed where the winds are suitable for producing power, but they should not have any significant impact on biodiversity and ecosystem functioning, or on human activities. The project will have two main themes: 1 - identify prospective networks of existing or potential MPAs in the Mediterranean and the Black Seas, shifting from a local perspective (centred on single MPAs) to the regional level (network of MPAs) and finally the basin scale (network of networks). The identification of the physical and biological connections among MPAs will elucidate the patterns and processes of biodiversity distribution. Measures to improve protection schemes will be suggested, based on maintaining effective exchanges (biological and hydrological) between protected areas. The national coastal focus of existing MPAs will be widened to both off shore and deep sea habitats, incorporating them into the networks through examination of current legislation, to find legal solutions to set up transboundary MPAs. 2 - explore where OWF might be established, producing an enriched wind atlas both for the Mediterranean and the Black Seas. OWF locations will avoid too sensitive habitats but the possibility for them to act as stepping-stones through MPAs, without interfering much with human activities, will be evaluated. Socioeconomic studies employing ecosystem services valuation methods to develop sustainable approaches for both MPA and OWF development will also be carried out, to complement the ecological and technological parts of the project, so as to provide guidelines to design, manage and monitor networks of MPAs and OWF. Two pilot projects (one in the Mediterranean Sea and one in the Black Sea) will test in the field the assumptions of theoretical approaches, based on previous knowledge, to find emerging properties in what we already know, in the light of the needs of the project. The project covers many countries and involves researchers across a vast array of subjects, in order to achieve a much-needed holistic approach to environmental protection. It will help to integrate the Mediterranean and Black Seas scientific communities through intense collective activities, combined with strong communications with stakeholders and the public at large. Consequently, the project will create a permanent network of excellent researchers (with cross fertilization and further capacity building) that will also work together also in the future, making their expertise available to their countries and to the European Union.

Agency: Cordis | Branch: FP7 | Program: CP-IP-SICA | Phase: OCEAN.2011-3 | Award Amount: 16.99M | Year: 2012

The overall scientific objectives of PERSEUS are to identify the interacting patterns of natural and human-derived pressures on the Mediterranean and Black Seas, assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. Well-coordinated scientific research and socio-economic analysis will be applied at a wide-ranging scale, from basin to coastal. The new knowledge will advance our understanding on the selection and application of the appropriate descriptors and indicators of the MSFD. New tools will be developed in order to evaluate the current environmental status, by way of combining monitoring and modelling capabilities and existing observational systems will be upgraded and extended. Moreover, PERSEUS will develop a concept of an innovative, small research vessel, aiming to serve as a scientific survey tool, in very shallow areas, where the currently available research vessels are inadequate. In view of reaching Good Environmental Status (GES), a scenario-based framework of adaptive policies and management schemes will be developed. Scenarios of a suitable time frame and spatial scope will be used to explore interactions between projected anthropogenic and natural pressures. A feasible and realistic adaptation policy framework will be defined and ranked in relation to vulnerable marine sectors/groups/regions in order to design management schemes for marine governance. Finally, the project will promote the principles and objectives outlined in the MSFD across the SES. Leading research Institutes and SMEs from EU Member States, Associated States, Associated Candidate countries, non-EU Mediterranean and Black Sea countries, will join forces in a coordinated manner, in order to address common environmental pressures, and ultimately, take action in the challenge of achieving GES.

Discover hidden collaborations