Entity

Time filter

Source Type

Lauwin-Planque, France

Nakata C.,Kyoto University | Kato T.,Crimean Astrophysical Observatory | Nogami D.,Kyoto University | Pavlenko E.P.,University of Huelva | And 14 more authors.
Publications of the Astronomical Society of Japan | Year: 2013

We report on photometric observations of two dwarf novae, OTJ075418.7+381225 and OTJ230425.8+062546, which showed superoutbursts in 2013 (OTJ075418) and in 2011 (OTJ230425). Their mean periods of the superhump were 0.0722403(26)d (OTJ075418) and 0.067317(35)d (OTJ230425). These objects showed a very long growth stage of the superhump (stage A) and a large period decrease in the stage A-B transition. The long stage A suggests slow evolution of the superhump due to the very small mass ratio of these objects. The declining rates during the plateau phase in the superoutburst of these objects were lower than those of SUUMa-type dwarf novae (DNe) with a similar superhump period. These properties were similar to those of SSSJ122221.7-311523, the most likely candidate for the period bouncer. Therefore, these two DNe are regarded as likely candidates for the period bouncer. We estimated the number density of period bouncers roughly from our observations for the last five years. There is a possibility that these WZSge-type DNe with unusual outburst properties might account for the missing population of the period bouncer suggested by the evolutionary scenario. © 2014 © The Author 2014. Published by Oxford University Press on behalf of the Astronomical Society of Japan. All rights reserved. Source


Kato T.,Kyoto University | Hambsch F.-J.,Groupe Europeen dObservations Stellaires GEOS | Dubovsky P.A.,Vihorlat Observatory | Kudzej I.,Vihorlat Observatory | And 89 more authors.
Publications of the Astronomical Society of Japan | Year: 2015

Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 102 SU UMa-type dwarf novae, observed mainly during the 2014-2015 season, and characterized these objects. Our project has greatly improved the statistics of the distribution of orbital periods, which is a good approximation of the distribution of cataclysmic variables at the terminal evolutionary stage, and has confirmed the presence of a period minimum at a period of 0.053 d and a period spike just above this period. The number density monotonically decreased toward the longer period and there was no strong indication of a period gap. We detected possible negative superhumps in Z Cha. It is possible that normal outbursts are also suppressed by the presence of a disk tilt in this system. There was no indication of enhanced orbital humps just preceding the superoutburst, and this result favors the thermal-tidal disk instability as the origin of superoutbursts. We detected superhumps in three AM CVn-type dwarf novae. Our observations and recent other detections suggest that 8% of objects showing dwarf nova-type outbursts are AM CVn-type objects. AM CVn-type objects and EI Psc-type objects may be more abundant than previously recognized. OT J213806, a WZ Sge-type object, exhibited remarkably different features between the 2010 and 2014 superoutbursts. Although the 2014 superoutburst was much fainter, the plateau phase was shorter than the 2010 one, and the course of the rebrightening phase was similar. This object indicates that the O - C diagrams of superhumps can indeed be variable, at least in WZ Sge-type objects. Four deeply eclipsing SU UMa-type dwarf novae (ASASSN-13cx, ASASSN-14ag, ASASSN-15bu, and NSV 4618) were identified. We studied long-term trends in supercycles in MM Hya and CY UMa and found systematic variations of supercycles of ∼20%. © The Author 2015. Published by Oxford University Press on behalf of the Astronomical Society of Japan. All rights reserved. Source


Nakata C.,Kyoto University | Ohshima T.,Kyoto University | Kato T.,Kyoto University | Nogami D.,Kyoto University | And 25 more authors.
Publications of the Astronomical Society of Japan | Year: 2013

We report on photometric observations of two WZ Sge-type dwarf novae, MASTER OT J211258.65+242145.4 and MASTER OT J203749.39+552210.3, which underwent outbursts in 2012. Early superhumps were recorded in both systems. During the superoutburst plateau, ordinary superhumps with a period of 0.060291(4) d (MASTER J211258) and with 0.061368(11) d (MASTER J203749) on average were observed. MASTERJ211258 and MASTERJ203749 exhibited eight post-superoutburst rebrightenings and more than four, respectively. In the final part of the superoutburst, an increase in superhump period was seen in both systems. We made a survey of WZSge-type dwarf novae with multiple rebrightenings, and confirmed that the superhump periods of WZSge-type dwarf novae with multiple rebrightenings were longer than those of WZSge-type dwarf novae without a rebrightening. Although WZSge-type dwarf novae with multiple rebrightenings have been thought to be likely candidates for period bouncers based on their low mass ratio (q), inferred from the period of fully grown (stage B) superhumps, our new method of using the period of growing superhumps (stage A superhumps), however, implies higher q's than those expected from stage B superhumps. These q values appear to be consistent with the duration of the stage A superoutbursts, which likely reflects the growth time of the 3W1 resonance. We present a working hypothesis that the small fractional superhump excesses for stage B superhumps in these systems may be explained by a gas pressure effect that works more efficiently in these systems than in ordinary SU UMa-type dwarf novae. This result forms a new picture that WZSge-type dwarf novae with multiple rebrightenings and SU UMa-type ones without a rebrightening (they are not period bouncers) are located in the same place on the evolutionary track. © 2013. Astronomical Society of Japan. Source


Kato T.,Kyoto University | Maehara H.,Kyoto University | Uemura M.,Hiroshima University | Henden A.,American Association of Variable Star Observers AAVSO | And 57 more authors.
Publications of the Astronomical Society of Japan | Year: 2010

Continued from Kato et al. (2009, PASJ, 61, S395), we collected the times of superhump maxima for 68 SU UMa-type dwarf novae, mainly observed during the 2009-2010 season. The newly obtained data confirmed the basic findings reported in Kato et al. (ibid.): the presence of stages A-C and the predominance of positive period derivatives during stage B in systems with superhump periods shorter than 0.07 d. There was a systematic difference in the period derivatives for the systems with superhump periods longer than 0.075 d between this study and Kato et al. (ibid.). We suggest that this difference was possibly caused by a relative lack of frequently outbursting SU UMa-type dwarf novae in this period regime in the present study. We recorded a strong beat phenomenon during the 2009 superoutburst of IY UMa. A close correlation between the beat period and the superhump period suggests that the changing angular velocity of the apsidal motion of the elliptical disk is responsible for the variation of the superhump periods. We also described three new WZ Sge-type objects with established early superhumps and one with likely early superhumps. We suggest that two systems, VX For and EL UMa, are WZ Sge-type dwarf novae with multiple rebrightenings. The O -C variation in OT J213806.6+261957 suggests that the frequent absence of rebrightenings in very short-Porb objects can be the result of a sustained superoutburst plateau at the epoch when usual SU UMa-type dwarf novae return to quiescence, preceding a rebrightening. We also present a formulation for a variety of Bayesian extensions to traditional period analyses. © 2010. Astronomical Society of Japan. Source


Kato T.,Kyoto University | Hambsch F.-J.,Groupe Europeen dObservations Stellaires GEOS | Maehara H.,Kyoto University | Masi G.,Virtual Telescope Project | And 84 more authors.
Publications of the Astronomical Society of Japan | Year: 2013

Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 86 SU UMa-type dwarf novae, mainly observed during the 2011-2012 season. We confirmed general trends recorded in our previous studies, such as the relation between period derivatives and orbital periods. There are some systems showing positive period derivatives despite the long orbital period. We observed the 2011 outburst of the WZ Sge-type dwarf nova BW Scl, and recorded an O - C diagram similar to those of previously known WZSge-type dwarf novae. The WZ Sge-type dwarf nova OT J184228.1+483742 showed an unusual pattern of double outbursts composed of an outburst with early superhumps and one with ordinary superhumps. We propose an interpretation that a very small growth rate of the 3:1 resonance due to an extremely low mass-ratio led to quenching the superoutburst before the ordinary superhump appeared. We systematically studied ER UMa-type dwarf novae, and found that V1159 Ori showed positive superhumps similar to ER UMa in the 1990s. The recently recognized ER UMa-type object BK Lyn dominantly showed negative superhumps, and its behavior was very similar to the present-day state of ER UMa. The pattern of period variations in AM CVn-type objects was very similar to that of short-period hydrogen-rich SU UMa-type dwarf novae, making them a helium analogue of hydrogenrich SU UMa-type dwarf novae. SBS 1108+574, a peculiar hydrogen-rich dwarf nova below the period minimum, showed a very similar pattern of period variations to those of short-period SU UMa-type dwarf novae. The massratio derived from the detected orbital period suggests that this secondary is a somewhat evolved star whose hydrogen envelope was mostly stripped during the mass-exchange. CC Scl, MASTER OT J072948.66+593824.4, and OT J173516.9+154708 showed only low-amplitude superhumps with complex profiles. These superhumps are likely to be a combination of two closely separated periods. © 2013. Astronomical Society of Japan. Source

Discover hidden collaborations