77 Cheongam Ro

Pohang, South Korea

77 Cheongam Ro

Pohang, South Korea
SEARCH FILTERS
Time filter
Source Type

Ahn H.-K.,77 Cheongam Ro | Barba L.,Carleton University | Barba L.,Free University of Colombia | Bose P.,Carleton University | And 3 more authors.
Discrete and Computational Geometry | Year: 2016

Let P be a closed simple polygon with n vertices. For any two points in P, the geodesic distance between them is the length of the shortest path that connects them among all paths contained in P. The geodesic center of P is the unique point in P that minimizes the largest geodesic distance to all other points of P. In 1989, Pollack et al. (Discrete Comput Geom 4(1): 611–626, 1989) showed an (Formula presented.)-time algorithm that computes the geodesic center of P. Since then, a longstanding question has been whether this running time can be improved. In this paper we affirmatively answer this question and present a deterministic linear-time algorithm to solve this problem. © 2016 Springer Science+Business Media New York


Lee Y.,Yonsei University | Oh J.Y.,Yonsei University | Oh J.Y.,Stanford University | Son S.Y.,77 Cheongam Ro | And 2 more authors.
ACS Applied Materials and Interfaces | Year: 2015

Morphological control over polythiophenes has been widely studied; however the impacts of regioregularity (RR) and molecular weight (MW) on their structural development have not been investigated systematically. This study examined a representative polythiophene, poly(3-hexylthiophene) (P3HT), to reveal that small differences in the RR can produce a large difference in the growth of nanofibrils. Low-RR P3HTs generated neat long nanofibrils (LNFs), whereas high-RR P3HTs formed short nanofibrils (SNFs). This study identified a critical RR (96-98%) depending on their MW, below which P3HT grew into LNFs and above which P3HT grew into SNFs. This study also found that the mixing ratio between high-RR P3HT and a low-RR P3HT in the solution phase is strongly correlated with the relative populations of SNF and LNF in the coated film. This study suggested that mixing high-RR and low-RR polymers may be a good strategy to optimize the electrical properties of polythiophenes for target applications. As an example, a mixture of high-RR (75%) P3HT and low-RR P3HT (25%) improved considerably the power conversion efficiency of bulk heterojunction polymer solar cells compared with the values obtained from the pure high-RR P3HT and the pure low-RR P3HT. © 2015 American Chemical Society.


PubMed | Korean University of Science and Technology, Pohang University of Science and Technology and 77 Cheongam ro
Type: Journal Article | Journal: Journal of controlled release : official journal of the Controlled Release Society | Year: 2015

Stem cell therapy has attracted a great deal of attention for treating intractable diseases such as cancer, stroke, liver cirrhosis, and ischemia. Especially, mesenchymal stem cells (MSCs) have been widely investigated for therapeutic applications due to the advantageous characteristics of long life-span, facile isolation, rapid proliferation, prolonged transgene expression, hypo-immunogenicity, and tumor tropism. MSCs can exert their therapeutic effects by releasing stress-induced therapeutic molecules after their rapid migration to damaged tissues. Recently, to improve the therapeutic efficacy, genetically engineered MSCs have been developed for therapeutic transgene expression by viral gene transduction and non-viral gene transfection. In general, the number of therapeutic cells for injection should be more than several millions for effective cell therapy. Adequate carriers for the controlled delivery of MSCs can reduce the required cell numbers and extend the duration of therapeutic effect, which provide great benefits for chronic disease patients. In this review, we describe genetic engineering of MSCs, recent progress of self-assembling supramolecular hydrogels, and their applications to cell therapy for intractable diseases and tissue regeneration.


Shin S.-J.,Center for Ubiquitous Manufacturing Systems | Suh S.-H.,Center for Ubiquitous Manufacturing Systems | Stroud I.,CAD CAM Laboratory | Yoon S.,77 Cheongam Ro
Journal of Intelligent Manufacturing | Year: 2015

Environmental concern requires manufacturers to extend the domain of their control and responsibility across the product’s life cycle. Much of the research has concentrated on assessment of environmental performance through the application of the Life Cycle Assessment (LCA) framework that provides a technical methodology to help identification of environmental impacts of product systems. However, the current LCA framework does not incorporate dynamic and diverse characteristics of manufacturing processes. As a result, the LCA’s referential data will largely deviate from the real ones to an extent that the purpose of LCA is not meaningful. In other words, the current and fixed referential data-based method is not suitable to specify the impact categories related to manufacturing processes. From the perspective of decision making related with environmental impact during manufacturing, the current LCA method carried out in the off-line is hard to apply. As a result, performance index, such as greenability, a major performance index for environment conscious manufacturing cannot be implemented in the real practice. This paper presents the development of a framework (called process-oriented LCA) to realize environmental conscious manufacturing incorporating both greenability and productivity. To show the applicability and validity of this framework, experiments and analysis have been conducted and a prototype system has been implemented for a turning machining process. © 2015 Springer Science+Business Media New York

Loading 77 Cheongam Ro collaborators
Loading 77 Cheongam Ro collaborators