65 avenue Paul Rimbaud

Montpellier, France

65 avenue Paul Rimbaud

Montpellier, France
SEARCH FILTERS
Time filter
Source Type

Zele F.,IRD Montpellier | Zele F.,Montpellier University | Zele F.,University of Lisbon | Vezilier J.,IRD Montpellier | And 8 more authors.
Parasites and Vectors | Year: 2014

Background: Identifying the parasites transmitted by a particular vector and the factors that render this vector susceptible to the parasite are key steps to understanding disease transmission. Although avian malaria has become a model system for the investigation of the ecological and evolutionary dynamics of Plasmodium parasites, little is still known about the field prevalence, diversity and distribution of avian Plasmodium species within the vectors, or about the extrinsic factors affecting Plasmodium population dynamics in the wild. Methods: We examined changes in avian malaria prevalence and Plasmodium lineage composition in female Culex pipiens caught throughout one field season in 2006, across four sampling sites in southern France. Using site occupancy models, we correct the naive estimates of Plasmodium prevalence to account for PCR-based imperfect detection. To establish the importance of different factors that may bear on the prevalence and diversity of avian Plasmodium in field mosquitoes, we focus on Wolbachia and filarial parasite co-infections, as well as on the insecticide resistance status of the mosquito. Results: Plasmodium prevalence in Cx. pipiens increased from February (0%) to October (15.8%) and did not vary significantly among the four sampling sites. The application of site occupancy models leads to a 4% increase in this initial (naive) estimate of prevalence. The parasite community was composed of 15 different haemosporidian lineages, 13 of which belonged to the Plasmodium genus, and 2 to the Haemoproteus genus. Neither the presence of different Wolbachia types and of filarial parasites co-infecting the mosquitoes, nor their insecticide resistance status were found to affect the Plasmodium prevalence and diversity. Conclusion: We found that haemosporidian parasites are common and diverse in wild-caught Cx. pipiens mosquitoes in Southern France. The prevalence of the infection in mosquitoes is unaffected by Wolbachia and filarial co-infections as well as the insecticide resistant status of the vector. These factors may thus have a negligible impact on the transmission of avian malaria. In contrast, the steady increase in prevalence from February to October indicates that the dynamics of avian malaria is driven by seasonality and supports that infected birds are the reservoir of a diverse community of lineages in southern France. © 2014 Zélé et al.; licensee BioMed Central Ltd.


Venail R.,65 avenue Paul Rimbaud | Mathieu B.,65 avenue Paul Rimbaud | Setier-Rio M.-L.,65 avenue Paul Rimbaud | Borba C.,65 avenue Paul Rimbaud | And 8 more authors.
Journal of Medical Entomology | Year: 2011

Bluetongue virus (BTV) is an economically important arbovirus of ruminants transmitted by Culicoides biting midges. Vector control using residual spraying or application to livestock is recommended by many authorities to reduce BTV transmission; however, the impact of these measures in terms of both inflicting mortality on Culicoides and subsequently upon BTV transmission is unclear. This study consisted of a standardized World Health Organization laboratory assay to determine the susceptibility of European Culicoides species to deltamethrin and a field trial based upon allowing individuals of a laboratory strain of Culicoides nubeculosus Meigen to feed upon sheep treated with Butox 7.5 pour-on (a deltamethrin-based topical formulation). Susceptibility in the laboratory trial was higher in colony C. nubeculosus (24-h LC90 = 0.00106%), than in field populations of Culicoides obsoletus Meigen (24-h LC90 = 0.00203%) or Culicoides imicola Kieffer (24-h LC90 = 0.00773%). In the field, the pour-on formulation was tested with a total of 816 C. nubeculosus specimens fed upon on the thigh of treated sheep. The study revealed a maximum mortality rate of 49% at 4 d postapplication, and duration of lethal effect was predicted to be as short as 10 d, despite testing being carried out with a highly susceptible strain. The reasons for this low efficacy are discussed with reference both to the potential for lack of spread of the active ingredient on the host and feeding patterns of the major potential vector species on the sheep host. Practical implications for vector control strategies during BTV incursions are also detailed. © 2011 Entomological Society of America.


Duchet C.,65 Avenue Paul Rimbaud | Duchet C.,French National Institute for Agricultural Research | Coutellec M.-A.,French National Institute for Agricultural Research | Franquet E.,Institut Universitaire de France | And 2 more authors.
Ecotoxicology | Year: 2010

Because exposure to toxicants not only results in mortality but also in multiple sublethal effects, the use of life-table data appears particularly suitable to assess global effects on exposed populations. The present study uses a life table response approach to assess population-level effects of two insecticides used against mosquito larvae, spinosad (8 μg/l) and Bacillus thuringiensis var. israelensis (Bti, 0.5 μl/l), on two non target species, Daphnia pulex and Daphnia magna (Crustacea: Cladocera), under laboratory versus field microcosms conditions. Population growth rates were inferred from life table data and Leslie matrices under a model with resource limitation (ceiling). These were further used to estimate population risks of extinction under each tested condition, using stochastic simulations. In laboratory conditions, analyses performed for each species confirmed the significant negative effect of spinosad on survival, mean time at death, and fecundity as compared to controls and Bti-treated groups; for both species, population growth rate λ was lower under exposure to spinosad. In field microcosms, 2 days after larvicide application, differences in population growth rates were observed between spinosad exposure conditions, and control and Bti exposure conditions. Simulations performed on spinosad-exposed organisms led to population extinction (minimum abundance = 0, extinction risk = 1), and this was extremely rapid (time to quasi-extinction = 4.1 one-week long steps, i.e. one month). Finally, D. magna was shown to be more sensitive than D. pulex to spinosad in the laboratory, and the effects were also detectable through field population demographic simulations. © 2010 Springer Science+Business Media, LLC.


Duchet C.,65 avenue Paul Rimbaud | Duchet C.,French National Institute for Agricultural Research | Caquet Th.,French National Institute for Agricultural Research | Franquet E.,Institut Universitaire de France | And 2 more authors.
Environmental Pollution | Year: 2010

The present study was undertaken to assess the impact of a candidate mosquito larvicide, spinosad (8, 17 and 33 μg L-1) on a field population of Daphnia magna under natural variations of water temperature and salinity, using Bti (0.16 and 0.50 μL L-1) as the reference larvicide. Microcosms (125 L) were placed in a shallow temporary marsh where D. magna was naturally present. The peak of salinity observed during the 21-day observation period may have been partly responsible for the decrease of daphnid population density in all the microcosms. It is also probably responsible for the absence of recovery in the microcosms treated with spinosad which caused a sharp decrease of D. magna abundance within the first two days following treatment whereas Bti had no effect. These results suggest that it may be difficult for a field population of daphnids to cope simultaneously with natural (water salinity and temperature) and anthropogenic (larvicides) stressors. © 2009 Elsevier Ltd. All rights reserved.


PubMed | CNRS Mediterranean Institute for Biodiversity and Ecology Marine and Continental, Agrocampus Ouest, rue Toufaire, 65 avenue Paul Rimbaud and 2 more.
Type: | Journal: The Science of the total environment | Year: 2016

The environmental safety of Bacillus thuringiensis subsp. israelensis (Bti) is still controversial, mainly because most of the previous field studies on its undesired effects were spatially limited and did not address the relationship between community similarity and application time and frequency. No general statement can therefore be drawn on the usage conditions of Bti that insure protection of non-target organisms. The present study was conducted in eight sites distributed over the main geographical sectors where mosquito control is implemented in mainland France and Corsica. Changes in non-target aquatic invertebrates were followed at elapsed time after repeated applications of two Bti formulations (VectoBac WDG or 12AS) up to four consecutive years. We examined the influence of both larvicide treatments and environmental variables on community dynamics and dissimilarity between treated and control areas. As it can be argued that chironomids are the most vulnerable group of non-target invertebrates, we scrutinised potential Bti-related effects on the dynamics of their community. The use of VectoBac WDG and 12AS in coastal and continental wetlands had no immediate or long-term detectable effect on the taxonomic structure and taxa abundance of non-target aquatic invertebrate communities, including chironomids. This applied to the main habitats where mosquito larvae occur, regardless of their geographic location. Flooding, whose frequency and duration depend on local meteorological and hydrological conditions, was identified as the main environmental driver of invertebrate community dynamics. Our findings add support to the environmental safety of currently available Bti formulations when following recommended application rates and best mosquito control practices.


L'Ambert G.,65 avenue Paul Rimbaud | Ferre J.-B.,65 avenue Paul Rimbaud | Schaffner F.,65 avenue Paul Rimbaud | Fontenille D.,IRD Montpellier
Journal of Vector Ecology | Year: 2012

Five trapping methods were compared for monitoring potential vectors of the West Nile virus in four areas in the Camargue Plain of France: carbon dioxide traps, bird-baited traps, gravid traps, resting boxes, and human landing catches. A total of 73,721 specimens, representing 14 species, was trapped in 2006. Results showed significant differences in species and abundance between the type of traps. Many more specimens were collected using CO2 traps than any other method, with an average of 212 specimens per night per trap (p<0.05). Culex pipiens was the most abundant species collected (36.8% of total with CO2 traps), followed by Aedes caspius (22.7%), Anopheles hyrcanus (18.3%), Culex modestus (18.3%), and Aedes detritus (3.2%). Bird-baited traps captured only eight specimens per night per trap on average, mainly Cx. pipiens (89.9%). The species collected and their abundance are influenced by the trap location, at ground or canopy level. Culex pipiens was twice as abundant in the canopy as on the ground, whereas it was the opposite for Ae. caspius, An. hyrcanus, and Ae. detritus. Culex modestus was equally abundant at both levels. Resting boxes and gravid traps were much less efficient, capturing around 0.3 specimens per night per trap. Results are discussed in relation to West Nile virus surveillance. © 2012 The Society for Vector Ecology.


Balenghien T.,CNRS Complex Medical Engineering Laboratory | Balenghien T.,CIRAD - Agricultural Research for Development | Carron A.,65 avenue Paul Rimbaud | Sinegre G.,65 avenue Paul Rimbaud | Bicout D.J.,CNRS Complex Medical Engineering Laboratory
Bulletin of Entomological Research | Year: 2010

Insect population dynamics depend strongly on environmental factors. For floodwater mosquitoes, meteorological conditions are crucial in the rhythm of mosquito abundances. Indeed, rainfall triggers the egg hatching after flooding breeding sites, and temperature controls the duration of the aquatic immature development up to adult emergence. According to this, we have developed a simple mechanistic and tractable model that describes the population dynamics of floodwater mosquitoes as a function only of the most accessible meteorological variables, rainfall and temperature. The model involves three parameters: development duration tdev of the immature aquatic stages, the adult emergence rate function f(t) (characterized by the emergence time scale and shaping the profile of adult population abundance), and the depletion rate, of adult disappearance. The developed model was subsequently applied to fit experimental field data of the dynamics of Aedes caspius (Pallas), the main pest mosquito in southern France. First, it was found that the emergence rate function of adult mosquitoes very well reproduce experimental data of the dynamics of immature development for all sampled temperatures. The estimated values of tdev and both exhibit Arrhenius behaviour as a function of temperature. Second, using the meteorological records of rainfall and temperature as inputs, the model correctly fit data from a two-site CO2trapping survey conducted in 2004 and 2005. The estimated depletion rates (summation of the mortality and the emigration rates) were found to be a concave quadratic function of temperature with a maximum of 0.5 per days at about 22°C. © 2010 Cambridge University Press.


Duchet C.,65 avenue Paul Rimbaud | Duchet C.,Agrocampus Ouest | Mitie Inafuku M.,Agrocampus Ouest | Caquet T.,Agrocampus Ouest | And 4 more authors.
Ecotoxicology and Environmental Safety | Year: 2011

Chitobiase is involved in exoskeleton degradation and recycling during the moulting process in arthropods. In aquatic species, the moulting fluid is released into the aqueous environment, and chitobiase activity present therein can be used to follow the dynamics of arthropod populations. Here, chitobiase activity was used for monitoring the impact of mosquito candidate larvicides on Daphnia pulex and Daphnia magna under laboratory conditions. Both species were exposed to spinosad (2, 4, 8γgL-1) and diflubenzuron (0.2, 0.4, 0.8γgL-1) for 14 days. Bacillus thuringiensis var. israelensis (Bti; 0.25, 0.5, 1γLL-1) was used as the reference larvicide. Chitobiase activity, adult survival, individual growth and fecundity, expressed as the number of neonates produced, were measured every 2 days. Average Exposure Concentrations of spinosad were ten-fold lower than the nominal concentrations, whereas only a slight deviation was observed for diflubenzuron. In contrast to Bti, spinosad and diflubenzuron significantly affected both species in terms of adult survival, and production of neonates. As compared to D. pulex, D. magna was more severely affected by diflubenzuron, at low and medium concentrations, with reduced adult growth and much lower chitobiase activity. Chitobiase activity was positively correlated with the individual body length, number of neonates produced between two consecutive observation dates, and number of females and neonates. In addition, the significant positive correlations between chitobiase activity measured on the last sampling date before the first emission of neonates and the cumulative number of neonates produced during the whole observation period strongly support the potential of the activity of this chitinolytic enzyme as a proxy for assessing the dynamics of arthropod populations exposed to larvicides used for mosquito control. © 2010 Elsevier Inc.


Duchet C.,65 avenue Paul Rimbaud | Duchet C.,Haifa University | Franquet E.,Aix - Marseille University | Lagadic L.,Agrocampus Ouest | Lagneau C.,65 avenue Paul Rimbaud
Ecotoxicology and Environmental Safety | Year: 2015

To optimize their efficacy, some insecticides used for mosquito control are introduced into aquatic ecosystems where mosquito larvae develop (marshes, ponds, sanitation devices) and cannot escape from the treated water. However, this raises the question of possible effects of mosquito larvicides on non-target aquatic species. Bacillus thuringiensis var. israelensis (Bti), which is well-known for its selectivity for Nematocera dipterans, is widely used for mosquito control all over the world. Spinosad, a mixture of spinosyns A and D known as fermentation products of a soil actinomycete (Saccharopolyspora spinosa), is a biological neurotoxic insecticide with a broader action spectrum. It is a candidate larvicide for mosquito control, but some studies showed that it may be toxic to beneficial or non-target species, including non-biting midges. The present study was therefore undertaken to assess the impact of Bti and spinosad on natural populations of Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in field enclosures implemented in Mediterranean coastal wetlands. Unlike Bti, spinosad had a strong lethal effect on P. nubifer and seems to affect T. curticornis at presumed recommended rates for field application. Differences in the sensitivity of these two species to spinosad confirm that population dynamics need to be known for a proper assessment of the risk encountered by chironomids in wetlands where larvicide-based mosquito control occurs. © 2015 Elsevier Inc.


PubMed | Aix - Marseille University, 65 avenue Paul Rimbaud and Agrocampus Ouest
Type: | Journal: Ecotoxicology and environmental safety | Year: 2015

To optimize their efficacy, some insecticides used for mosquito control are introduced into aquatic ecosystems where mosquito larvae develop (marshes, ponds, sanitation devices) and cannot escape from the treated water. However, this raises the question of possible effects of mosquito larvicides on non-target aquatic species. Bacillus thuringiensis var. israelensis (Bti), which is well-known for its selectivity for Nematocera dipterans, is widely used for mosquito control all over the world. Spinosad, a mixture of spinosyns A and D known as fermentation products of a soil actinomycete (Saccharopolyspora spinosa), is a biological neurotoxic insecticide with a broader action spectrum. It is a candidate larvicide for mosquito control, but some studies showed that it may be toxic to beneficial or non-target species, including non-biting midges. The present study was therefore undertaken to assess the impact of Bti and spinosad on natural populations of Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in field enclosures implemented in Mediterranean coastal wetlands. Unlike Bti, spinosad had a strong lethal effect on P. nubifer and seems to affect T. curticornis at presumed recommended rates for field application. Differences in the sensitivity of these two species to spinosad confirm that population dynamics need to be known for a proper assessment of the risk encountered by chironomids in wetlands where larvicide-based mosquito control occurs.

Loading 65 avenue Paul Rimbaud collaborators
Loading 65 avenue Paul Rimbaud collaborators