Time filter

Source Type

Murviel-lès-Montpellier, France

Venail R.,65 avenue Paul Rimbaud | Mathieu B.,65 avenue Paul Rimbaud | Setier-Rio M.-L.,65 avenue Paul Rimbaud | Borba C.,65 avenue Paul Rimbaud | And 8 more authors.
Journal of Medical Entomology

Bluetongue virus (BTV) is an economically important arbovirus of ruminants transmitted by Culicoides biting midges. Vector control using residual spraying or application to livestock is recommended by many authorities to reduce BTV transmission; however, the impact of these measures in terms of both inflicting mortality on Culicoides and subsequently upon BTV transmission is unclear. This study consisted of a standardized World Health Organization laboratory assay to determine the susceptibility of European Culicoides species to deltamethrin and a field trial based upon allowing individuals of a laboratory strain of Culicoides nubeculosus Meigen to feed upon sheep treated with Butox 7.5 pour-on (a deltamethrin-based topical formulation). Susceptibility in the laboratory trial was higher in colony C. nubeculosus (24-h LC90 = 0.00106%), than in field populations of Culicoides obsoletus Meigen (24-h LC90 = 0.00203%) or Culicoides imicola Kieffer (24-h LC90 = 0.00773%). In the field, the pour-on formulation was tested with a total of 816 C. nubeculosus specimens fed upon on the thigh of treated sheep. The study revealed a maximum mortality rate of 49% at 4 d postapplication, and duration of lethal effect was predicted to be as short as 10 d, despite testing being carried out with a highly susceptible strain. The reasons for this low efficacy are discussed with reference both to the potential for lack of spread of the active ingredient on the host and feeding patterns of the major potential vector species on the sheep host. Practical implications for vector control strategies during BTV incursions are also detailed. © 2011 Entomological Society of America. Source

Duchet C.,65 avenue Paul Rimbaud | Duchet C.,Haifa University | Franquet E.,Aix - Marseille University | Lagadic L.,Agrocampus Ouest | Lagneau C.,65 avenue Paul Rimbaud
Ecotoxicology and Environmental Safety

To optimize their efficacy, some insecticides used for mosquito control are introduced into aquatic ecosystems where mosquito larvae develop (marshes, ponds, sanitation devices) and cannot escape from the treated water. However, this raises the question of possible effects of mosquito larvicides on non-target aquatic species. Bacillus thuringiensis var. israelensis (Bti), which is well-known for its selectivity for Nematocera dipterans, is widely used for mosquito control all over the world. Spinosad, a mixture of spinosyns A and D known as fermentation products of a soil actinomycete (Saccharopolyspora spinosa), is a biological neurotoxic insecticide with a broader action spectrum. It is a candidate larvicide for mosquito control, but some studies showed that it may be toxic to beneficial or non-target species, including non-biting midges. The present study was therefore undertaken to assess the impact of Bti and spinosad on natural populations of Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in field enclosures implemented in Mediterranean coastal wetlands. Unlike Bti, spinosad had a strong lethal effect on P. nubifer and seems to affect T. curticornis at presumed recommended rates for field application. Differences in the sensitivity of these two species to spinosad confirm that population dynamics need to be known for a proper assessment of the risk encountered by chironomids in wetlands where larvicide-based mosquito control occurs. © 2015 Elsevier Inc. Source

L'Ambert G.,65 avenue Paul Rimbaud | Ferre J.-B.,65 avenue Paul Rimbaud | Schaffner F.,65 avenue Paul Rimbaud | Fontenille D.,IRD Montpellier
Journal of Vector Ecology

Five trapping methods were compared for monitoring potential vectors of the West Nile virus in four areas in the Camargue Plain of France: carbon dioxide traps, bird-baited traps, gravid traps, resting boxes, and human landing catches. A total of 73,721 specimens, representing 14 species, was trapped in 2006. Results showed significant differences in species and abundance between the type of traps. Many more specimens were collected using CO2 traps than any other method, with an average of 212 specimens per night per trap (p<0.05). Culex pipiens was the most abundant species collected (36.8% of total with CO2 traps), followed by Aedes caspius (22.7%), Anopheles hyrcanus (18.3%), Culex modestus (18.3%), and Aedes detritus (3.2%). Bird-baited traps captured only eight specimens per night per trap on average, mainly Cx. pipiens (89.9%). The species collected and their abundance are influenced by the trap location, at ground or canopy level. Culex pipiens was twice as abundant in the canopy as on the ground, whereas it was the opposite for Ae. caspius, An. hyrcanus, and Ae. detritus. Culex modestus was equally abundant at both levels. Resting boxes and gravid traps were much less efficient, capturing around 0.3 specimens per night per trap. Results are discussed in relation to West Nile virus surveillance. © 2012 The Society for Vector Ecology. Source

Zele F.,IRD Montpellier | Zele F.,Montpellier University | Zele F.,University of Lisbon | Vezilier J.,IRD Montpellier | And 8 more authors.
Parasites and Vectors

Background: Identifying the parasites transmitted by a particular vector and the factors that render this vector susceptible to the parasite are key steps to understanding disease transmission. Although avian malaria has become a model system for the investigation of the ecological and evolutionary dynamics of Plasmodium parasites, little is still known about the field prevalence, diversity and distribution of avian Plasmodium species within the vectors, or about the extrinsic factors affecting Plasmodium population dynamics in the wild. Methods: We examined changes in avian malaria prevalence and Plasmodium lineage composition in female Culex pipiens caught throughout one field season in 2006, across four sampling sites in southern France. Using site occupancy models, we correct the naive estimates of Plasmodium prevalence to account for PCR-based imperfect detection. To establish the importance of different factors that may bear on the prevalence and diversity of avian Plasmodium in field mosquitoes, we focus on Wolbachia and filarial parasite co-infections, as well as on the insecticide resistance status of the mosquito. Results: Plasmodium prevalence in Cx. pipiens increased from February (0%) to October (15.8%) and did not vary significantly among the four sampling sites. The application of site occupancy models leads to a 4% increase in this initial (naive) estimate of prevalence. The parasite community was composed of 15 different haemosporidian lineages, 13 of which belonged to the Plasmodium genus, and 2 to the Haemoproteus genus. Neither the presence of different Wolbachia types and of filarial parasites co-infecting the mosquitoes, nor their insecticide resistance status were found to affect the Plasmodium prevalence and diversity. Conclusion: We found that haemosporidian parasites are common and diverse in wild-caught Cx. pipiens mosquitoes in Southern France. The prevalence of the infection in mosquitoes is unaffected by Wolbachia and filarial co-infections as well as the insecticide resistant status of the vector. These factors may thus have a negligible impact on the transmission of avian malaria. In contrast, the steady increase in prevalence from February to October indicates that the dynamics of avian malaria is driven by seasonality and supports that infected birds are the reservoir of a diverse community of lineages in southern France. © 2014 Zélé et al.; licensee BioMed Central Ltd. Source

Duchet C.,65 avenue Paul Rimbaud | Duchet C.,Agrocampus Ouest | Mitie Inafuku M.,Agrocampus Ouest | Caquet T.,Agrocampus Ouest | And 4 more authors.
Ecotoxicology and Environmental Safety

Chitobiase is involved in exoskeleton degradation and recycling during the moulting process in arthropods. In aquatic species, the moulting fluid is released into the aqueous environment, and chitobiase activity present therein can be used to follow the dynamics of arthropod populations. Here, chitobiase activity was used for monitoring the impact of mosquito candidate larvicides on Daphnia pulex and Daphnia magna under laboratory conditions. Both species were exposed to spinosad (2, 4, 8γgL-1) and diflubenzuron (0.2, 0.4, 0.8γgL-1) for 14 days. Bacillus thuringiensis var. israelensis (Bti; 0.25, 0.5, 1γLL-1) was used as the reference larvicide. Chitobiase activity, adult survival, individual growth and fecundity, expressed as the number of neonates produced, were measured every 2 days. Average Exposure Concentrations of spinosad were ten-fold lower than the nominal concentrations, whereas only a slight deviation was observed for diflubenzuron. In contrast to Bti, spinosad and diflubenzuron significantly affected both species in terms of adult survival, and production of neonates. As compared to D. pulex, D. magna was more severely affected by diflubenzuron, at low and medium concentrations, with reduced adult growth and much lower chitobiase activity. Chitobiase activity was positively correlated with the individual body length, number of neonates produced between two consecutive observation dates, and number of females and neonates. In addition, the significant positive correlations between chitobiase activity measured on the last sampling date before the first emission of neonates and the cumulative number of neonates produced during the whole observation period strongly support the potential of the activity of this chitinolytic enzyme as a proxy for assessing the dynamics of arthropod populations exposed to larvicides used for mosquito control. © 2010 Elsevier Inc. Source

Discover hidden collaborations