Entity

Time filter

Source Type

Alpena, MI, United States

Hayden T.A.,Great Lakes Fishery Commission | Hayden T.A.,Carleton University | Holbrook C.M.,U.S. Geological Survey | Fielder D.G.,60 East Fletcher St. | And 5 more authors.
PLoS ONE | Year: 2014

Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n=199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n=140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. © 2014, Public Library of Science. All rights reserved. Source


Binder T.R.,Michigan State University | Riley S.C.,U.S. Geological Survey | Holbrook C.M.,U.S. Geological Survey | Hansen M.J.,U.S. Geological Survey | And 4 more authors.
Canadian Journal of Fisheries and Aquatic Sciences | Year: 2015

Fidelity to high-quality spawning sites helps ensure that adults repeatedly spawn at sites that maximize reproductive success. Fidelity is also an important behavioural characteristic to consider when hatchery-reared individuals are stocked for species restoration, because artificial rearing environments may interfere with cues that guide appropriate spawning site selection. Acoustic telemetry was used in conjunction with Cormack–Jolly–Seber capture–recapture models to compare degree of spawning site fidelity of wild and hatchery-reared lake trout (Salvelinus namaycush) in northern Lake Huron. Annual survival was estimated to be between 77% and 81% and did not differ among wild and hatchery males and females. Site fidelity estimates were high in both wild and hatchery-reared lake trout (ranging from 0.78 to 0.94, depending on group and time filter), but were slightly lower in hatchery-reared fish than in wild fish. The ecological implication of the small difference in site fidelity between wild and hatchery-reared lake trout is unclear, but similarities in estimates suggest that many hatchery-reared fish use similar spawning sites to wild fish and that most return to those sites annually for spawning. © 2015, National Research Council of Canada. All rights reserved. Source

Discover hidden collaborations