525 Solutions Inc.

Tuscaloosa, AL, United States

525 Solutions Inc.

Tuscaloosa, AL, United States
SEARCH FILTERS
Time filter
Source Type

PubMed | University of Warwick, University of Queensland, South China University of Technology, 525 Solutions Inc. and McGill University
Type: | Journal: Carbohydrate polymers | Year: 2016

The focus of this study was on the effects of plasticisers (the ionic liquid 1-ethyl-3-methylimidazolium acetate, or [Emim][OAc]; and glycerol) on the changes of starch structure on multiple length scales, and the variation in properties of plasticised starch-based films, during ageing. The films were prepared by a simple melt compression moulding process, followed by storage at different relative humidity (RH) environments. Compared with glycerol, [Emim][OAc] could result in greater homogeneity in [Emim][OAc]-plasticised starch-based films (no gel-like aggregates and less molecular order (crystallites) on the nano-scale). Besides, much weaker starch-starch interactions but stronger starch-[Emim][OAc] interactions at the molecular level led to reduced strength and stiffness but increased flexibility of the films. More importantly, [Emim][OAc] (especially at high content) was revealed to more effectively maintain the plasticised state during ageing than glycerol: the densification (especially in the amorphous regions) was suppressed; and the structural characteristics especially on the nano-scale were stabilised (especially at a high RH), presumably due to the suppressed starch molecular interactions by [Emim][OAc] as confirmed by Raman spectroscopy. Such behaviour contributed to stabilised mechanical properties. Nonetheless, the crystallinity and thermal stability of starch-based films with both plasticisers were much less affected by ageing and moisture uptake during storage (42 days), but mostly depended on the plasticiser type and content. As starch is a typical semi-crystalline bio-polymer containing abundant hydroxyl groups and strong hydrogen bonding, the findings here could also be significant in creating materials from other similar biopolymers with tailored sensitivity and properties to the environment.


Wang H.,University of Alabama | Gurau G.,University of Alabama | Gurau G.,525 Solutions Inc. | Shamshina J.,University of Alabama | And 6 more authors.
Chemical Science | Year: 2014

Using permeation through a model membrane in a Franz diffusion cell, we have demonstrated that acidic and basic active pharmaceutical ingredients (APIs) in deep eutectic 'liquid co-crystal' form can be held tightly together, even in solution, via strong hydrogen bonds or partially ionized interactions, providing simultaneous transport at rates much higher than solutions of their corresponding, commercially available crystalline salts, albeit at rates that are lower than the neutral forms of the individual molecules. It was also shown that the deep eutectic APIs do not have to be premade, but hydrogen-bonded complexes can be formed in situ by mixing the corresponding API-solvent solutions. To understand the behavior, we have extensively studied a range of nonstoichiometric mixtures of lidocaine and ibuprofen spectroscopically and via membrane transport. The data demonstrates the nature of the interactions between the acid and base and provides a route to tune the rate of membrane transport. © 2014 the Partner Organisations.


Pernak J.,Poznan University of Technology | Niemczak M.,Poznan University of Technology | Giszter R.,Poznan University of Technology | Shamshina J.L.,University of Alabama | And 7 more authors.
ACS Sustainable Chemistry and Engineering | Year: 2014

Eight new glyphosate-based herbicidal ionic liquids (HILs), containing both mono- and dianions of glyphosate (benzalkonium glyphosate, bis(2-hydroxyethyl)- cocomethylammonium glyphosate, oleylmethylbis(2-hydroxyethyl)ammonium glyphosate, didecyldimethylammonium glyphosate, di(hydrogenated tallow)dimethylammonium glyphosate, 4-decyl-4-ethylmorpholinium glyphosate, di(benzalkonium) glyphosate, and di(bis(2- hydroxyethyl)cocomethylammonium) glyphosate) were prepared via acid-base reaction between the corresponding ammonium hydroxides (some premade) and glyphosate free acid. The transformation of glyphosate free acid into ionic liquids led to an elimination of melting points in all but one compound and significant change in solubilities. All HILs exhibited higher thermal stability than glyphosate free acid. Greenhouse testing indicated that while at a higher application rate of 360 g/ha the efficacy of all the HILs was comparable to the commercial herbicide control, at a lower application rate of 180 g/ha, the efficacy of all HILs was as much as two and a half to three times higher when compared to the commercial formulation, and the dianionic glyphosates were the most effective. In field trials, all but one of the tested HILs demonstrated excellent efficacy. Laboratory regrowth tests established that the ionic liquids of glyphosate are efficiently translocated to rhizomes preventing the regrowth of plants. © 2014 American Chemical Society.


Shen X.,University of Alabama | Shen X.,Northeast Forestry University | Shamshina J.L.,525 Solutions Inc. | Berton P.,University of Alabama | And 5 more authors.
Green Chemistry | Year: 2016

This review is focused on the fabrication, properties, and applications of hydrogels prepared from two of the most abundant biopolymers on earth, cellulose and chitin. The review emphasizes the latest developments in hydrogel preparation (including solvent systems, cross-linker types, and preparation methods, which determine the "greenness" of the process) using these biocompatible and biodegradable biopolymers. The preparation of both physical (without covalent cross-links) and chemical (with covalent cross-links) hydrogels via dissolution/gelation is discussed. Additionally, formation of injectable thermoset and/or pH sensitive hydrogels from aqueous solutions of derivatives (chitosan, methyl cellulose, and hydroxypropylmethyl cellulose) with or without a cross-linker are discussed. This review also compares the design parameters for different applications of various pure and composite hydrogels based on cellulose, chitin, or chitosan, including applications as controlled and targeted drug delivery systems, improved tissue engineering scaffolds, wound dressings, water purification sorbents, and others. © The Royal Society of Chemistry 2016.


Shamshina J.L.,University of Alabama | Shamshina J.L.,525 Solutions Inc. | Gurau G.,University of Alabama | Gurau G.,525 Solutions Inc. | And 5 more authors.
Journal of Materials Chemistry B | Year: 2014

Chitin-calcium alginate composite fibers were prepared from a solution of high molecular weight chitin extracted from shrimp shells and alginic acid in the ionic liquid 1-ethyl-3-methylimidazolium acetate by dry-jet wet spinning into an aqueous bath saturated with CaCO3. The fibers exhibited a significant proportion of the individual properties of both calcium alginate and chitin. Ultimate stress values were close to values obtained for calcium alginate fibers, and the absorption capacities measured were consistent with those reported for current wound care dressings. Wound healing studies (rat model, histological evaluation) indicated that chitin-calcium alginate covered wound sites underwent normal wound healing with re-epithelialization and that coverage of the dermal fibrosis with hyperplastic epidermis was consistently complete after only 7 days of treatment. Using a single patch per wound per animal during the entire study, all rat wounds achieved 95-99% closure by day 10 with complete wound closure by day 14. © the Partner Organisations 2014.


Grant
Agency: Department of Energy | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 150.00K | Year: 2013

With the 4 billion tons of uranium estimated to be dissolved in the earth & apos;s oceans, an essentially unlimited resource is available to those with easy and affordable access. With decades of research towards the extraction of uranium from seawater, focus has been directed towards the selectivity of the adsorbent material, the cost of the material, and the ability of the adsorbent to be recycled. Cost analysis indicates that 47 % of the total cost of extracting uranium from seawater is directed at the cost of manufacturing the adsorbent material.1 It has recently been proven, through the use of ionic liquid technology, that chitin can be dissolved and electrospun into nanofibers directly from a shrimp shell extract in ionic liquid. 2 The ability of being able to produce a high surface area, easily functionalized, and strong material from a waste product could have significant impact on decreasing the costs of an adsorbent. With minimal effort following, chemical surface modification can provide a natural, renewable, and highly selective adsorbent for the extraction of uranium from seawater.3 Using this recently proven technique, in collaboration with Professor Robin Rogers from The University of Alabama, we intend to design and manufacture a mini pilot-scale plant for the microwave-assisted dissolution of chitin from shrimp shell waste and the subsequent electrospinning of high surface area chitin nanofibers in a continuous fashion for the extraction of uranium from seawater. With the production of this mini pilot scale plant, we could provide cheap, affordable adsorbents for increased scale seawater testing and deployment. The success of this adsorbent could provide additional opportunities for the seafood industry with increased revenues and job creation through decreased waste disposal costs and a marketable product for sale.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 150.00K | Year: 2012

This Small Business Technology Transfer (SBIR) Phase I project will utilize patent pending technology that allows direct dissolution and reconstitution of natural biopolymers to prepare chitin/alginate composite fibers with embedded additives for use in wound care products. The technology allows for solution blending and spinning of alginate and chitin (both known to speed wound healing, stimulate cell recovery, and be antibacterial) with therapeutic additives to produce composite fibers. This unique technology embeds the additives into the fibers during spinning, leading to slow release of the additives into the wound as the fiber absorbs water and becomes less rigid, and thus allowing the delivery of physiologically relevant doses of a therapeutic agent to the wound over an extended period of time. These fibers will a) possess the inherent properties of the biopolymers that increase wound healing and cell recovery, b) localize delivery of beneficial additives, and c) slowly release the additives over an extended period of time. In Phase I, the goals are to develop an understanding of the relationship between the relative chitin/alginate/additive composition and spinning conditions on mechanical and rheological properties (strength, elasticity, viscosity), water absorption, and additive release rates under simulated conditions as needed for the diabetic skin ulcer markets. The broader impact/commercial potential of this project will be the potential to reduce the duration (by ~40%) and cost (by 20-50%) of wound care treatment by developing a unique composite fiber with additives both on the surface and evenly distributed within the fiber, thereby allowing not only for extended release of the additives, but also less frequent dressing changes and decreased healing time compared to the current spray-coated fibers. The targeted skin ulcer treatment market is predicted to generate revenue of $7.4 billion by 2013, an increase caused by the rising diabetic population. A subset of this market where produced fibers are most applicable, the moist dressing treatment, achieved revenue of $315.4 million in 2008 and is expected to grow to $424.8 million by 2013. There is an urgent need for products that can improve healing rates and novel dressings incorporating innovative fibers that can be applied less frequency, last longer, and contain additives to promote healing, thus reducing patient care cost. The successful development of these specialty fibers for the diabetic ulcer market will provide scientific insight allowing for the customized production of composite fibers for other wound care and health markets.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: | Award Amount: 175.50K | Year: 2012

This Small Business Technology Transfer (SBIR) Phase I project will utilize patent pending technology that allows direct dissolution and reconstitution of natural biopolymers to prepare chitin/alginate composite fibers with embedded additives for use in wound care products. The technology allows for solution blending and spinning of alginate and chitin (both known to speed wound healing, stimulate cell recovery, and be antibacterial) with therapeutic additives to produce composite fibers. This unique technology embeds the additives into the fibers during spinning, leading to slow release of the additives into the wound as the fiber absorbs water and becomes less rigid, and thus allowing the delivery of physiologically relevant doses of a therapeutic agent to the wound over an extended period of time. These fibers will a) possess the inherent properties of the biopolymers that increase wound healing and cell recovery, b) localize delivery of beneficial additives, and c) slowly release the additives over an extended period of time. In Phase I, the goals are to develop an understanding of the relationship between the relative chitin/alginate/additive composition and spinning conditions on mechanical and rheological properties (strength, elasticity, viscosity), water absorption, and additive release rates under simulated conditions as needed for the diabetic skin ulcer markets.

The broader impact/commercial potential of this project will be the potential to reduce the duration (by ~40%) and cost (by 20-50%) of wound care treatment by developing a unique composite fiber with additives both on the surface and evenly distributed within the fiber, thereby allowing not only for extended release of the additives, but also less frequent dressing changes and decreased healing time compared to the current spray-coated fibers. The targeted skin ulcer treatment market is predicted to generate revenue of $7.4 billion by 2013, an increase caused by the rising diabetic population. A subset of this market where produced fibers are most applicable, the moist dressing treatment, achieved revenue of $315.4 million in 2008 and is expected to grow to $424.8 million by 2013. There is an urgent need for products that can improve healing rates and novel dressings incorporating innovative fibers that can be applied less frequency, last longer, and contain additives to promote healing, thus reducing patient care cost. The successful development of these specialty fibers for the diabetic ulcer market will provide scientific insight allowing for the customized production of composite fibers for other wound care and health markets.

Loading 525 Solutions Inc. collaborators
Loading 525 Solutions Inc. collaborators