Entity

Time filter

Source Type

Atlanta, GA, United States

Li Z.,4121 Rollins Research Center | Li Z.,Wuhan University | Li Z.,Georgia Regents University | Doho G.,Emory University | And 7 more authors.
Radiation Research | Year: 2015

Cell populations that have been exposed to high-charge and energy (HZE) particle radiation, and then challenged by expression of a rare-cutting nuclease, show an increased frequency of deletions and translocations originating at the enzyme cut sites. Here, we examine whether this effect also occurs in nonirradiated cells that have been co-cultured with irradiated cells. Human cells were irradiated with 0.3-1.0 Gy of either 600 MeV/u 56Fe or 1,000 MeV/u 48Ti ions or with 0.3-3.0 Gy of 320 kV X rays. These were co-cultured with I-SceI-expressing reporter cells at intervals up to 21 days postirradiation. Co-culture with HZE-irradiated cells led to an increase in the frequency of I-SceI-stimulated translocations and deletions in the nonirradiated cells. The effect size was similar to that seen previously in directly irradiated populations (maximum effect in bystander cells of 1.7-to 4-fold depending on ion and end point). The effect was not observed when X-ray-irradiated cells were co-cultured with nonirradiated cells, but was correlated with an increase in γ-H2AX foci-positive cells in the nonirradiated population, suggesting the presence of genomic stress. Transcriptional profiling of a directly irradiated cell population showed that many genes for cytokines and other secretory proteins were persistently upregulated, but their induction was not well correlated with functional effects on repair in co-cultured cells, suggesting that this transcriptional response alone is not sufficient to evoke the effect. The finding that HZE-irradiated cells influence the DNA double-strand break repair fidelity in their nonirradiated neighbors has implications for risk in the space radiation environment. © 2015 by Radiation Research Society. Source

Discover hidden collaborations