Time filter

Source Type

Guimarães, Portugal

Vial S.,3Bs Research Group | Reis R.L.,3Bs Research Group | Oliveira J.M.,ICVS 3Bs PT Government Associate Laboratory
Current Opinion in Solid State and Materials Science

Gold nanoparticles (AuNPs) have arisen a lot of interest in the clinical realms of nanomedicine. Despite the large advances made in cancer research using AuNPs, their use in tissue engineering and regenerative medicine (TERM) is still in its infancy. Herein, it is discussed the properties, functionalization, and emerging use of AuNPs as a multifunctional and multimodal platform for drug delivery, phototherapy, diagnostic and cell imaging purposes. Moreover, the recent reports related to the ability of AuNPs to enhance stem cell differentiation for bone tissue engineering, to enhance the mechanical and adhesive properties of scaffolds and surface topography to guide cell behaviors are addressed. © 2016 Elsevier Ltd. Source

Santos L.J.,3Bs Research Group | Santos L.J.,PT Government Associate Laboratory | Reis R.L.,3Bs Research Group | Reis R.L.,PT Government Associate Laboratory | And 2 more authors.
Trends in Biotechnology

Mechanical stimulus is of upmost importance in tissues developmental and regeneration processes as well as in maintaining body homeostasis. Classical physiological reactions encompass an increase of blood vessel diameter upon exposure to high blood pressure, or the expansion of cortical bone after continuous high-impact exercise. At a cellular level, it is well established that extracellular stiffness, topography, and remote magnetic actuation are instructive mechanical signals for stem cell differentiation. Based on this, biomaterials and their properties can be designed to act as true stem cell regulators, eventually leading to important advances in conventional tissue engineering techniques. This review identifies the latest advances and tremendous potential of magnetic actuation within the scope of regenerative medicine and tissue engineering. © 2015 Elsevier Ltd. Source

Vieira S.,3Bs Research Group | Vieira S.,ICVS 3Bs PT Government Associate Laboratory | Vieira S.,University of Porto | Vial S.,3Bs Research Group | And 11 more authors.
RSC Advances

Gold nanorods (AuNRs) have emerged as an exceptional nanotool for a myriad of applications ranging from cancer therapy to tissue engineering. However, their surface modification with biocompatible and stabilizing biomaterials is crucial to allow their use in a biological environment. Herein, low-acyl gellan gum (GG) was used to coat AuNRs surface, taking advantage of its stabilizing, biocompatible and gelling features. The layer-by-layer based strategy implied the successive deposition of poly(acrylic acid), poly(allylamine hydrochloride) and GG, which allowed the formation of a GG hydrogel-like shell with 7 nm thickness around individual AuNRs. Stability studies in a wide range of pH and salt concentrations showed that the polysaccharide coating can prevent AuNRs aggregation. Moreover, a reversible pH-responsive feature of the nanoparticles was observed. Cytocompatibility and osteogenic ability of GG-coated AuNRs were also addressed. After 14 days of culturing within SaOS-2, an osteoblast-like cell line, in vitro studies revealed that AuNRs-GG exhibit no cytotoxicity, were internalized by the cells and localized inside lysosomes. AuNRs-GG combined with osteogenic media enhanced by two fold the mineralization capacity, as compared to cells exposed to osteogenic media alone. The proposed system has shown interesting features for osteogenesis, and further insights might be relevant for drug delivery, tissue engineering and regenerative medicine. © 2015 The Royal Society of Chemistry. Source

Oliveira M.B.,3Bs Research Group | Oliveira M.B.,IBB Institute for Biotechnology And Bioengineering | Song W.,3Bs Research Group | Song W.,IBB Institute for Biotechnology And Bioengineering | And 12 more authors.
Soft Matter

An elastin-like recombinamer (ELR) containing the RGD cell adhesion domain was used to fabricate microparticles by an innovative and affordable process based on the use of superhydrophobic surfaces. Two microparticles types with different crosslinking extents were prepared. The biological response was tested using an osteoblast-like cell line (SaOs-2) performing proliferation and alkaline phosphatase (ALP) quantification tests, as well as assessing cytotoxicity, morphology and cell distribution on the particles. The main goal of the work was the assessment of the in vitro formation of cell-induced microparticle aggregates that could provide indications for the possible formation of an in situ-forming scaffold upon implantation. ELR microparticles have been successfully obtained by deposition of a polymeric solution on bioinspired polystyrene superhydrophobic surfaces and two different crosslinking extents were achieved by controlling the time of exposure to the crosslinker. The crosslinking extent affected swelling behavior and the dynamic mechanical properties of the particles. SaOs-2 morphology, ALP expression, spatial distribution and ability to bind the microparticles together were dependent on the physicochemical properties of the microparticles: the more crosslinked condition was the most favorable for cell proliferation and to form a cell-induced aggregation scaffold, making these particles suitable to be applied in bone tissue engineering. © 2011 The Royal Society of Chemistry. Source

Custodio C.A.,3Bs Research Group | Custodio C.A.,IBB Institute for Biotechnology And Bioengineering | Alves C.M.,3Bs Research Group | Alves C.M.,IBB Institute for Biotechnology And Bioengineering | And 4 more authors.
Journal of Tissue Engineering and Regenerative Medicine

Covalent grafting of biomolecules is a strategy to improve the biocompatibility and bioactivity of materials. However, it is critical to maintain the biological activity of the biomolecule upon its attachment to the surface. In the present study we compared the biological properties of chitosan, in which the surface was enriched with fibronectin (Fn), using two methodologies: chemical immobilization, using a water-soluble carbodiimide; and simple adsorption. X-ray photoelectron spectroscopy studies confirmed the successful immobilization of Fn onto modifiedmembranes. SaOs-2 cells were seeded onto these surfaces to assess the biological consequences of such modifications. The presence of Fn stimulated cell adhesion on chitosan. It was found that after 7 days of culture in the presence of covalently attached Fn, the cells are confluent; significantly fewer cells were detected in unmodified film and in film with adsorbed Fn. This result is consistent with the fact that considerable desorption of Fn from chitosan takes place within 24 h in culture medium. This study showed that Fn may be easily covalently attached onto chitosan substrates, improving the biological performance of the material. The technique could find applications in tissue-engineering strategies, as the surface modification of chitosan-based substrates could be carried out in more complex geometries, such as in scaffolds or particles. Copyright © 2010 John Wiley & Sons, Ltd. Source

Discover hidden collaborations