Entity

Time filter

Source Type

Wanchai, China

Wong T.W.,Chinese University of Hong Kong | Tam W.W.S.,Chinese University of Hong Kong | Yu I.T.S.,Chinese University of Hong Kong | Lau A.K.H.,Hong Kong University of Science and Technology | And 2 more authors.
Atmospheric Environment | Year: 2013

We developed a risk-based, multi-pollutant air quality health index (AQHI) reporting system in Hong Kong, based on the Canadian approach. We performed time series studies to obtain the relative risks of hospital admissions for respiratory and cardiovascular diseases associated with four air pollutants: sulphur dioxide, nitrogen dioxide, ozone, and particulate matter with an aerodynamic diameter less than 10μm (PM10). We then calculated the sum of excess risks of the hospital admissions associated with these air pollutants. The cut-off points of the summed excess risk, for the issuance of different health warnings, were based on the concentrations of these pollutants recommended as short-term Air Quality Guidelines by the World Health Organization. The excess risks were adjusted downwards for young children and the elderly. Health risk was grouped into five categories and sub-divided into eleven bands, with equal increments in excess risk from band 1 up to band 10 (the 11th band is 'band 10+'). We developed health warning messages for the general public, including at-risk groups: young children, the elderly, and people with pre-existing cardiac or respiratory diseases. The new system addressed two major shortcomings of the current standard-based system; namely, the time lag between a sudden rise in air pollutant concentrations and the issue of a health warning, and the reliance on one dominant pollutant to calculate the index. Hence, the AQHI represents an improvement over Hong Kong's existing air pollution index. © 2012 Elsevier Ltd. Source


Zhong L.,Guangdong Provincial Environmental Monitoring Center | Louie P.K.K.,33 F Revenue Tower | Zheng J.,South China University of Technology | Yuan Z.,Hong Kong University of Science and Technology | And 3 more authors.
Atmospheric Environment | Year: 2013

The information provided by the scientific studies and control measures implemented in the Pearl River Delta (PRD) region of China reveals that tremendous progress has been made in the understanding of regional air pollution issues and the deployment of mitigation measures for alleviating these problems. Given the unparalleled rapid economic growth in the PRD over the past two decades, such progress was only made possible by strong, science-based support and the partnerships between government and research institutions in the region and overseas. Researchers from these partnership programs and related studies have deployed cutting-edge expertise and experience in various crucial mainland China and mainland China/Hong Kong-level projects. China recognizes the importance of protecting the environment and cleaning up the air in the pursuit of sustainable growth and economic development. To avoid falling into a cycle of event-driven clean-up efforts, China has recently taken a major step and updated the national ambient air quality standards. Clearly, China is implementing an increasing number of evidence-based policies to address air pollution problems. Thus, to bring a fresh impetus at a national level, the PRD must maintain and augment the Hong Kong-mainland collaborative momentum, inducing a "whole-China" effort to clean up air pollution. To strengthen the science-based support system and ensure continuous and concerted effort in implementing the regional multi-pollutant control strategy, there must be an overarching and integral Hong Kong-Guangdong science consortium framework supporting the formulation of regional policy and control measures built on common goals under the "one country, two systems" principle. The "PRD Approach" of the air quality management regime reflected regional cooperative efforts in synchronous air pollutant control, catalyzed the crucial role of information disclosure and subtly transformed the air quality management approach to overcome the nation's new air pollution challenges. © 2013 Elsevier Ltd. Source


Louie P.K.K.,33 F Revenue Tower | Ho J.W.K.,33 F Revenue Tower | Tsang R.C.W.,33 F Revenue Tower | Blake D.R.,University of California at Irvine | And 6 more authors.
Atmospheric Environment | Year: 2013

Ambient air measurements of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) were conducted and characterised during a two-year grid study in the Pearl River Delta (PRD) region of southern China. The present grid study pioneered the systematic investigation of the nature and characteristics of complex VOC and OVOC sources at a regional scale. The largest contributing VOCs, accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Sub-regional VOC spatial characteristics were identified, namely: i) relatively fresh pollutants, consistent with elevated vehicular and industrial activities, around the PRD estuary; and ii) a concentration gradient with higher mixing ratios of VOCs in the west as compared with the eastern part of PRD. Based on alkyl nitrate aging determination, a high hydroxyl radical (OH) concentration favoured fast hydrocarbon reactions and formation of locally produced ozone. The photochemical reactivity analysis showed aromatic hydrocarbons and alkenes together consisted of around 80% of the ozone formation potential (OFP) among the key VOCs. We also found that the OFP from OVOCs should not be neglected since their OFP contribution was more than one-third of that from VOCs alone. These findings support the choice of current air pollution control policy which focuses on vehicular sources but warrants further controls. Industrial emissions and VOCs emitted by solvents should be the next targets for ground-level ozone abatement. © 2012 Elsevier Ltd. Source

Discover hidden collaborations