1815 North University Street

University Park, IL, United States

1815 North University Street

University Park, IL, United States
SEARCH FILTERS
Time filter
Source Type

Mojica L.,Urbana University | Mojica L.,Research Center istencia En Tecnologia seno Del Estado Of Jalisco | Berhow M.,1815 North University Street | Gonzalez de Mejia E.,Urbana University
Food Chemistry | Year: 2017

Black beans contain anthocyanins that could be used as colorants in foods with associated health benefits. The objective was to optimize anthocyanins extraction from black bean coats and evaluate their physicochemical stability and antidiabetes potential. Optimal extraction conditions were 24% ethanol, 1:40 solid-to-liquid ratio and 29 °C (P < 0.0001). Three anthocyanins were identified by MS ions, delphinidin-3-O-glucoside (465.1 m/z), petunidin-3-O-glucoside (479.1 m/z) and malvidin-3-O-glucoside (493.1 m/z). A total of 32 mg of anthocyanins were quantified per gram of dry extract. Bean anthocyanins were stable at pH 2.5 and low-temperature 4 °C (89.6%), with an extrapolated half-life of 277 days. Anthocyanin-rich extracts inhibited α-glucosidase (37.8%), α-amylase (35.6%), dipeptidyl peptidase-IV (34.4%), reactive oxygen species (81.6%), and decreased glucose uptake. Black bean coats are a good source of anthocyanins and other phenolics with the potential to be used as natural-source food colorants with exceptional antidiabetes potential. © 2017 Elsevier Ltd


Torres-Rodriguez M.L.,Autonomous University of San Luis Potosi | Torres-Rodriguez M.L.,Urbana University | Garcia-Chavez E.,Autonomous University of San Luis Potosi | Berhow M.,1815 North University Street | De Mejia E.G.,Urbana University
Journal of Ethnopharmacology | Year: 2016

Ethnopharmacological relevance Calea urticifolia leaves are traditionally used as a remedy to treat gastric ulcers, diabetes, and inflammation by the Xi'uy ancient native community of San Luis Potosi, Mexico. Aim of the study The aim was to assess the effects of the aqueous extract of the Mexican plant C. urticifolia as anti-inflammatory and anti-oxidant using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and to provide evidence on the phenolic compounds. Materials and methods RAW 264.7 macrophages were stimulated with 1 μg/mL of LPS and treated with 10, 25 50, 75 y 100 μg/mL of Calea urticifolia lyophilized aqueous extract (CuAqE). Nitric oxide (NO) release, tumor necrosis factor alpha, prostaglandin E2 production, inducible nitric oxide synthase (iNOS), cyclooxygenase-2, nuclear factor-κB (NF-κB) p65, NF-κB p50 expression and reactive oxygen species (ROS) were measured; other pro-inflammatory proteins were measured with membrane antibody array. Phenolic compounds were analyzed by LC-ESI-MS. Results Inflammation was inhibited by suppressing iNOS/NO pathway through inhibiting nucleus translocation of NF-κB p65 and p50 sub-units. ROS production was significantly (P<0.05) inhibited in a dose-dependent manner in LPS-stimulated macrophages. Moreover, the expression of inflammatory markers was suppressed (34.5-88.3%) by CuAqE. A mix of caffeoylquinic acid derivatives and flavonoid-glycosides were found in CuAqE. Conclusion Phenolic compounds in CuAqE such as caffeoylquinic acid derivatives and flavonoid glycosides could be responsible for inhibiting LPS-induced inflammation and oxidative stress by iNOS/NO pathway through suppressing NF-κB signaling pathway and by inhibition of ROS production in RAW 264.7 macrophages. Therefore, these results support the traditional knowledge of C. urticifolia tea such as an anti-inflammatory and antioxidant agent. © 2016 Elsevier Ireland Ltd. All rights reserved.


Vaughan M.,1815 North University Street | Backhouse D.,University of New England of Australia | Del Ponte E.M.,Federal University of Viçosa
World Mycotoxin Journal | Year: 2016

Fusarium head blight (FHB) of wheat, caused mainly by a few members of the Fusarium graminearum species complex (FGSC), is a major threat to agricultural grain production, food safety, and animal health. The severity of disease epidemics and accumulation of associated trichothecene mycotoxins in wheat kernels is strongly driven by meteorological factors. The potential impacts of change in climate are reviewed from the perspective of the FGSC life cycle and host resistance mechanisms influenced by abiotic pressures at the ecological, physiological and molecular level. Alterations in climate patterns and cropping systems may affect the distribution, composition and load of FGSC inoculum, but quantitative information is lacking regarding the differential responses among FGSC members. In general, the coincidence of wet and warm environment during flowering enhances the risk of FHB epidemics, but the magnitude and direction of the change in FHB and mycotoxin risk will be a consequence of a multitude of effects on key processes affecting inoculum dynamics and host susceptibility. Rates of residue decomposition, inoculum production and dispersal may be significantly altered by changes in crop rotations, atmospheric carbon dioxide concentration ([CO2]), temperature and precipitation patterns, but the impact may be much greater for regions where inoculum is more limited, such as temperate climates. In regions of non-limiting inoculum, climate change effects will likely be greater on the pathogenic rather than on the saprophytic phase. Although the mechanisms by which abiotic stress influences wheat defences against Fusarium species are unknown, available data would suggest that wheat may be more susceptible to Fusarium infection under future climate conditions. Additional research in this area should be a priority so that breeding efforts and climate resilient management strategies can be developed. © 2016 Wageningen Academic Publishers.


Bower A.M.,University of Illinois at Urbana - Champaign | Real Hernandez L.M.,University of Illinois at Urbana - Champaign | Berhow M.A.,1815 North University Street | De Mejia E.G.,University of Illinois at Urbana - Champaign
Journal of Agricultural and Food Chemistry | Year: 2014

Greek oregano (Origanum vulgare), marjoram (Origanum majorana), rosemary (Rosmarinus officinalis), and Mexican oregano (Lippia graveolens) are concentrated sources of bioactive compounds. The aims were to characterize and examine extracts from greenhouse-grown or commercially purchased herbs for their ability to inhibit dipeptidyl peptidase IV (DPP-IV) and protein tyrosine phosphatase 1B (PTP1B), enzymes that play a role in insulin secretion and insulin signaling, respectively. Greenhouse herbs contained more polyphenols (302.7-430.1 μg of gallic acid equivalents/mg of dry weight of extract (DWE)) and flavonoids (370.1-661.4 μg of rutin equivalents/mg of DWE) compared to the equivalent commercial herbs. Greenhouse rosemary, Mexican oregano, and marjoram extracts were the best inhibitors of DPP-IV (IC50 = 16, 29, and 59 μM, respectively). Commercial rosemary, Mexican oregano, and marjoram were the best inhibitors of PTP1B (32.4-40.9% at 500 μM). The phytochemicals eriodictyol, naringenin, hispidulin, cirsimaritin, and carnosol were identified by LC-ESI-MS as being present in greenhouse-grown Mexican oregano and rosemary. Computational modeling indicated that hispidulin, carnosol, and eriodictyol would have the best binding affinities for DPP-IV. Biochemically, the best inhibitors of DPP-IV were cirsimaritin (IC50 = 0.43 ± 0.07 μM), hispidulin (IC50 = 0.49 ± 0.06 μM), and naringenin (IC50 = 2.5 ± 0.29 μM). Overall, herbs contain several flavonoids that inhibit DPP-IV and should be investigated further regarding their potential in diabetes management. © 2014 American Chemical Society.


Hemashettar B.M.,Pvt. Ltd. | Patil R.N.,Jawaharlal Nehru Medical College | O'Donnell K.,1815 North University Street | Chaturvedi V.,New York State Department of Health | And 2 more authors.
Journal of Clinical Microbiology | Year: 2011

In this article, we describe a chronic case of rhinofacial mucormycosis caused by Mucor irregularis, formerly known as Rhizomucor variabilis var. variabilis, a rare mycotic agent in humans. The infection caused progressive destruction of the nasal septum and soft and hard palate, leading to collapse of the nose bridge and an ulcerative gaping hole. The mucoralean mold cultured from a nasal biopsy specimen was determined by multilocus DNA sequence data to be conspecific with M. irregularis. Copyright © 2011, American Society for Microbiology. All Rights Reserved.


Rose D.J.,Purdue University | Rose D.J.,1815 North University Street | Patterson J.A.,Purdue University | Hamaker B.R.,Purdue University
Journal of Agricultural and Food Chemistry | Year: 2010

Human fecal fermentation profiles of maize, rice, and wheat bran and their dietary fiber fractions released by alkaline-hydrogen peroxide treatment (principally arabinoxylan) were obtained with the aim of identifying and characterizing fractions associated with high production of short chain fatty acids and a linear fermentation profile for possible application as a slowly fermentable dietary fiber. The alkali-soluble fraction from maize bran resulted in the highest short chain fatty acid production among all samples tested, and was linear over the 24 h fermentation period. Size-exclusion chromatography and 1H NMR suggested that higher molecular weight and uniquely substituted arabinose side chains may contribute to these properties. Monosaccharide disappearance data suggest that maize and rice bran arabinoxylans are fermented by a debranching mechanism, while wheat bran arabinoxylans likely contain large unsubstituted xylose regions that are fermented preferentially, followed by poor fermentation of the remaining, highly branched oligosaccharides. © 2009 American Chemical Society.


Maragos C.M.,1815 North University Street
Toxins | Year: 2015

Paxilline (PAX) is a tremorgenic mycotoxin that has been found in perennial ryegrass infected with Acremonium lolii. To facilitate screening for this toxin, four murine monoclonal antibodies (mAbs) were developed. In competitive indirect enzyme-linked immunosorbent assays (CI-ELISAs) the concentrations of PAX required to inhibit signal development by 50% (IC50s) ranged from 1.2 to 2.5 ng/mL. One mAb (2-9) was applied to the detection of PAX in maize silage. The assay was sensitive to the effects of solvents, with 5% acetonitrile or 20% methanol causing a two-fold or greater increase in IC50. For analysis of silage samples, extracts were cleaned up by adsorbing potential matrix interferences onto a solid phase extraction column. The non-retained extract was then diluted with buffer to reduce solvent content prior to assay. Using this method, the limit of detection for PAX in dried silage was 15 μg/kg and the limit of quantification was 90 μg/kg. Recovery from samples spiked over the range of 100 to 1000 μg/kg averaged 106% ± 18%. The assay was applied to 86 maize silage samples, with many having detectable, but none having quantifiable, levels of PAX. The results suggest the CI-ELISA can be applied as a sensitive technique for the screening of PAX in maize silage. © 2015 by the authors; licensee MDPI, Basel, Switzerland.


Larson T.M.,1815 North University Street | Kendra D.F.,1815 North University Street | Busman M.,1815 North University Street | Brown D.W.,1815 North University Street
Current Genetics | Year: 2011

Fusarium verticillioides is both an endophyte and a pathogen of maize and is a health threat in many areas of the world because it can contaminate maize with fumonisins, a toxic secondary metabolite. We identified eight putative chitin synthase (CHS) genes in F. verticillioides genomic sequence, and phylogenetic evidence shows that they group into seven established CHS gene classes. We targeted two CHSs (CHS5 and CHS7) for deletion analysis and found that both are required for normal hyphal growth and maximal disease of maize seedlings and ears. CHS5 and CHS7 encode a putative class V and class VII fungal chitin synthase, respectively; they are located adjacent to each other and are divergently transcribed. Fluorescent microscopy found that both CHS deficient strains produce balloon-shaped hyphae, while growth assays indicated that they were more sensitive to cell wall stressing compounds (e.g., the antifungal compound Nikkomycin Z) than wild type. Pathogenicity assays on maize seedlings and ears indicated that both strains were significantly reduced in their ability to cause disease. Our results demonstrate that both CHS5 and CHS7 are necessary for proper hyphal growth and pathogenicity of F. verticillioides on maize. © 2011 Springer-Verlag.


Price N.P.J.,1815 North University Street | Ray K.J.,1815 North University Street | Vermillion K.E.,1815 North University Street | Dunlap C.A.,1815 North University Street | Kurtzman C.P.,1815 North University Street
Carbohydrate Research | Year: 2012

Sophorolipids are a group of O-acylsophorose-based biosurfactants produced by several yeasts of the Starmerella clade. The known sophorolipids are typically partially acetylated 2-O-β-d-glucopyranosyl-d-glucopyranose (sophorose) O-β-glycosidically linked to 17-l-hydroxy-Δ9-octadecenoic acid, where the acyl carboxyl group often forms a 4″-lactone to the terminal glucosyl residue. In a recent MALDI-TOFMS-based screen for sophorolipid-producing yeasts we identified a new species, Candida sp. NRRL Y-27208, that produces significant amounts of novel sophorolipids. This paper describes the structural characterization of these new compounds, using carbohydrate and lipid analysis, mass spectrometry, and NMR spectroscopy. Unlike those reported previously, the NRRL Y-27208 sophorolipids contain an ω-hydroxy-linked acyl group (typically 18-hydroxy-Δ9-octadecenoate), and occur predominantly in a non-lactone, anionic form. In addition, 17 dimeric and trimeric sophoroses were identified by MALDI-TOFMS from this strain. The surfactant-like properties of these sophorolipids have value as potential replacements for petroleum-based detergents and emulsifiers. © 2011 Elsevier Ltd. All rights reserved.


Eller F.J.,National United University | Teel J.A.,National United University | Palmquist D.E.,1815 North University Street
JAOCS, Journal of the American Oil Chemists' Society | Year: 2011

Cuphea seed oil (CSO) is a source of decanoic acid which is useful in the preparation of estolide lubricants among other applications. Decanoic acid and other free fatty acids (FFA) can be hydrolyzed from CSO using a catalyst like KOH, followed by neutralization with HCl and extraction with hexane. This procedure, however, uses caustic materials, hazardous solvents and generates waste salt streams. This study investigated the use of water without catalysts to hydrolyze CSO in a continuous flow tubular reactor. Parameters such as the interaction of pressure and temperature, temperature, water to cuphea oil fatty acid residue (H 2O:COFAR) molar ratio, and flow rate were examined. The lowest conversions of CSO to FFA were at the lowest temperature (i.e., 300 °C) and the hydrolysis was ca. 90% at 350 °C and 13.8 MPa and ca. 80% at 365 °C and 13.8 MPa. Hydrolysis increased with pressure and leveled off at 13.8 MPa. Hydrolysis increased with temperature and leveled off at ca. 330 °C. The optimal H 2O:COFAR molar ratio was found to be 6:1. Conversion rates were inversely proportional to flow rate with 95% conversion at the lowest flow rate (i.e., 0.25 mL/min) corresponding to the longest residence time (i.e., ca. 45.2 min). These results demonstrate a continuous subcritical water process for hydrolyzing CSO to FFA that is effective, requires no catalysts and does not generate a waste salt stream. © 2011 AOCS (outside the USA).

Loading 1815 North University Street collaborators
Loading 1815 North University Street collaborators