Time filter

Source Type

Peoria, IL, United States

Dunn R.O.,1815 iversity St
Biofuels | Year: 2015

Biodiesel has several advantages compared to conventional diesel fuel (petrodiesel). Nevertheless, biodiesel has poor cold flow properties that may restrict its use in moderate climates. It is essential that the cold flow properties of biodiesel and its blends with petrodiesel be measured as accurately as possible. This work provides an overview of the important cold flow properties and how they are analyzed. The utility of cloud point (CP), pour point (PP), and cold filter plugging point (CFPP) in evaluating biodiesel at low temperatures is discussed. Advantages and limitations of the experimental methods are evaluated. Finally, the use of sub-ambient differential scanning calorimetry (DSC) in the study of low temperature phase behavior of biodiesel is examined. Copyright © 2015 Taylor & Francis.

Short D.P.G.,Pennsylvania State University | O'Donnell K.,1815 iversity St | Zhang N.,Rutgers University | Juba J.H.,Pennsylvania State University | Geiser D.M.,Pennsylvania State University
Journal of Clinical Microbiology | Year: 2011

It has been proposed that plumbing systems might serve as a significant environmental reservoir of human-pathogenic isolates of Fusarium. We tested this hypothesis by performing the first extensive multilocus sequence typing (MLST) survey of plumbing drain-associated Fusarium isolates and comparing the diversity observed to the known diversity of clinical Fusarium isolates. We sampled 471 drains, mostly in bathroom sinks, from 131 buildings in the United States using a swabbing method. We found that 66% of sinks and 80% of buildings surveyed yielded at least one Fusarium culture. A total of 297 isolates of Fusarium collected were subjected to MLST to identify the phylogenetic species and sequence types (STs) of these isolates. Our survey revealed that the six most common STs in sinks were identical to the six most frequently associated with human infections. We speculate that the most prevalent STs, by virtue of their ability to form and grow in biofilms, are well adapted to plumbing systems. Six major Fusarium STs were frequently isolated from plumbing drains within a broad geographic area and were identical to STs frequently associated with human infections. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Johnson E.T.,1815 iversity St
Molecular genetics and genomics : MGG | Year: 2014

The piggyBac transposable element, originally isolated from a virus in an insect cell line, is a valuable molecular tool for transgenesis and mutagenesis of invertebrates. For heterologous transgenesis in a variety of mammals, transfer of the piggyBac transposable element from an ectopic plasmid only requires expression of piggyBac transposase. To determine if piggyBac could function in dicotyledonous plants, a two-element system was developed in tobacco (Nicotiana tabacum) to test for transposable element excision and insertion. The first transgenic line constitutively expressed piggyBac transposase, while the second transgenic line contained at least two non-autonomous piggyBac transposable elements. Progeny from crosses of the two transgenic lines was analyzed for piggyBac excision and transposition. Several progeny displayed excision events, and all the sequenced excision sites exhibited evidence of the precise excision mechanism characteristic of piggyBac transposase. Two unique transposition insertion events were identified that each included diagnostic duplication of the target site. These data indicate that piggyBac transposase is active in a dicotyledonous plant, although at a low frequency.

Brown D.W.,1815 iversity St
Current Genetics | Year: 2011

Killer protein 4 (KP4) is a well studied viral toxin secreted by the maize smut fungus Ustilago maydis that kills sensitive Ustilago strains as well as inhibits Fusarium and plant root growth by inhibiting calcium uptake. Numerous small, cysteine-rich proteins have been shown to play a critical role in fungal-plant-bacterial associations. The discovery of six KP4-like genes in F. verticillioides precipitated efforts to understand their function and evolutionary origin. Analysis of publicly available genomic sequence identified 31 additional KP4-like genes from a range of Ascomycota, a Basidiomycota, and the moss Physcomitrella patens. Sequence comparison and phylogenetic analysis indicate that the viral KP4 and the moss and fungal KP4-like genes evolved from a common ancestor providing evidence for lateral gene transfer between kingdoms. Six genes of the 37 total genes are predicted to encode a protein with two, non-identical KP4-like domains in tandem separated by 29-56 amino acids. The results suggest that two independent events led to the dual-domain KP4 genes present in different lineages of the Ascomycota. Understanding the nature and function of KP4-like proteins in mycotoxin-producing species like Fusarium may help to limit plant diseases and increase food safety and food production. © 2010 Springer-Verlag (outside the USA).

Wiemann P.,University of Munster | Brown D.W.,1815 iversity St | Kleigrewe K.,University of Munster | Bok J.W.,University of Wisconsin - Madison | And 3 more authors.
Molecular Microbiology | Year: 2010

Besides industrially produced gibberellins (GAs), Fusarium fujikuroi is able to produce additional secondary metabolites such as the pigments bikaverin and neurosporaxanthin and the mycotoxins fumonisins and fusarin C. The global regulation of these biosynthetic pathways is only poorly understood. Recently, the velvet complex containing VeA and several other regulatory proteins was shown to be involved in global regulation of secondary metabolism and differentiation in Aspergillus nidulans. Here, we report on the characterization of two components of the F. fujikuroi velvet-like complex, FfVel1 and FfLae1. The gene encoding this first reported LaeA orthologue outside the class of Eurotiomycetidae is upregulated in δFfvel1 microarray-studies and FfLae1 interacts with FfVel1 in the nucleus. Deletion of Ffvel1 and Fflae1 revealed for the first time that velvet can simultaneously act as positive (GAs, fumonisins and fusarin C) and negative (bikaverin) regulator of secondary metabolism, and that both components affect conidiation and virulence of F. fujikuroi. Furthermore, the velvet-like protein FfVel2 revealed similar functions regarding conidiation, secondary metabolism and virulence as FfVel1. Cross-genus complementation studies of velvet complex component mutants between Fusarium, Aspergillus and Penicillium support an ancient origin for this complex, which has undergone a divergence in specific functions mediating development and secondary metabolism. © 2010 Blackwell Publishing Ltd.

Discover hidden collaborations