Time filter

Source Type

Liao Q.,Zhejiang University | Wang Y.,148th Central Hospital of the Peoples Liberation Army | Cheng J.,Ningbo Kangning Hospital | Dai D.,Zhejiang University | And 6 more authors.
Molecular Medicine Reports | Year: 2015

Schizophrenia (SCZ) is one of the most complex mental illnesses affecting ~1% of the population worldwide. SCZ pathogenesis is considered to be a result of genetic as well as epigenetic alterations. Previous studies have aimed to identify the causative genes of SCZ. However, DNA methylation of long non-coding RNAs (lncRNAs) involved in SCZ has not been fully elucidated. In the present study, a comprehensive genome-wide analysis of DNA methylation was conducted using samples from two male patients with paranoid and undifferentiated SCZ, respectively. Methyl-CpG binding domain protein-enriched genome sequencing was used. In the two patients with paranoid and undifferentiated SCZ, 1,397 and 1,437 peaks were identified, respectively. Bioinformatic analysis demonstrated that peaks were enriched in protein-coding genes, which exhibited nervous system and brain functions. A number of these peaks in gene promoter regions may affect gene expression and, therefore, influence SCZ-associated pathways. Furthermore, 7 and 20 lncRNAs, respectively, in the Refseq database were hypermethylated. According to the lncRNA dataset in the NONCODE database, ~30% of intergenic peaks overlapped with novel lncRNA loci. The results of the present study demonstrated that aberrant hypermethylation of lncRNA genes may be an important epigenetic factor associated with SCZ. However, further studies using larger sample sizes are required. Source

Discover hidden collaborations