Time filter

Source Type

Ji H.,Zhejiang University | Wang Y.,148 Central Hospital of PLA | Jiang D.,Zhejiang University | Liu G.,Zhejiang University | And 20 more authors.
Molecular Medicine Reports | Year: 2016

Aberrant promoter methylation of multiple genes is associated with various diseases, including Alzheimer's disease (AD). The goal of the present study was to determine whether dopamine receptor D4 (DRD4) promoter methylation is associated with AD. In the current study, the methylation levels of the DRD4 promoter were measured in 46 AD patients and 61 controls using bisulfite pyrosequencing technology. The results of the present study demonstrated that DRD4 promoter methylation was significantly higher in AD patients than in controls. A further breakdown analysis by gender revealed that there was a significant association of DRD4 promoter methylation with AD in males (23 patients and 45 controls). In conclusion, the results of the present study demonstrated that elevated DRD4 promoter methylation was associated with AD risk in males.

Chang L.,Zhejiang University | Wang Y.,148 Central Hospital of PLA | Ji H.,Zhejiang University | Dai D.,Zhejiang University | And 17 more authors.
PLoS ONE | Year: 2014

Brain derived neurotrophic factor (BDNF) has been known to play an important role in various mental disorders or diseases such as Alzheimer's disease (AD). The aim of our study was to assess whether BDNF promoter methylation in peripheral blood was able to predict the risk of AD. A total of 44 AD patients and 62 age- and gender-matched controls were recruited in the current case-control study. Using the bisulphite pyrosequencing technology, we evaluated four CpG sites in the promoter of the BDNF. Our results showed that BDNF methylation was significantly higher in AD cases than in the controls (CpG1: p = 10.021; CpG2: p = 0.002; CpG3: p = 0.007; CpG4: p = 0.005; average methylation: p = 0.004). In addition, BDNF promoter methylation was shown to be significantly correlated with the levels of alkaline phosphatase (ALP), glucose, Lp(a), ApoE and ApoA in males (ALP: r =-0.308, p = 0.042; glucose: r =-0.383, p = 0.010; Lp(a): r = 0.333, p = 0.027; ApoE: r = -0.345, p = 0.032;), ApoA levels in females (r = 0.362, p = 0.033), and C Reactive Protein (CRP) levels in both genders (males: r =-0.373, p = 0.016; females: r =-0.399, p = 0.021). Our work suggested that peripheral BDNF promoter methylation might be a diagnostic marker of AD risk, although its underlying function remains to be elaborated in the future. Copyright: © 2014 Chang et al.

Zhong N.,Jiangsu University | Shi S.,Nantong University | Wang H.,First Peoples Hospital of Kunshan City | Wu G.,Jiangsu University | And 5 more authors.
International Journal of Oncology | Year: 2016

Aurora kinase A (AURKA) is an oncogenic serine/ threonine kinase, it plays important roles in tumorigenesis and chemoresistance. In this study, we investigated the expression of AURKA in lung adenocarcinoma tissues, the role of small interference RNA targeting AURKA on growth, cell cycle and apoptosis of lung adenocarcinoma cell lines in vitro. The AURKA is highly expressed in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines. Lentivirusmediated short hairpin RNA (shRNA) was used to knock down AURKA expression in human lung adenocarcinoma cell lines H1299 and A549. The results indicated that depletion of AURKA could inhibit cell growth, cause cell cycle arrest and apoptosis. The potential mechanisms of AURKA inhibition induced cell cycle arrest and apoptosis are associated with downregulated RAF-1, CCND2, CCND3, CDK4, PAK4 EGFR and upregulated WEE1 expression. Furthermore AURKA knockdown cooperated with vincristine (VCR) to repress A549 cell proliferation. Therefore, AURKA plays important roles in the proliferation of human lung adenocarcinoma cells, which suggests that AURKA could be a promising tool for lung adenocarcinoma therapy.

Wang Y.-L.,148 Central Hospital of PLA | Wang Y.-T.,Henan University | Li J.-F.,148 Central Hospital of PLA | Zhang Y.-Z.,148 Central Hospital of PLA | And 2 more authors.
PLoS ONE | Year: 2015

Background: A number of epidemiologic studies examining the relationship between body mass index (BMI) and the future occurrence of Parkinson's disease (PD) reported largely inconsistent findings. We conducted a dose-response meta-analysis of prospective studies to clarify this association. Methods: Eligible prospective studies were identified by a search of PubMed and by checking the references of related publications. The generalized least squares trend estimation was employed to compute study-specific relative risks (RR) and 95% confidence intervals (CI) for an increase in BMI of 5 kg/m2, and the random-effects model was used to compute summary RR and 95% CI. Results: A total of 10 prospective studies were included in the final analysis. An increase in BMI of 5 kg/m2 was not associated with PD risk, with a summary RR of 1.00 (95% CI = 0.89-1.12). Results of subgroup analysis found similar results except for a week positive association in studies that adjusted for alcohol consumption (RR = 1.13, 95% CI = 0.99-1.29), and a week inverse association in studies that did not (RR = 0.90, 95% CI = 0.78-1.04). In a separate meta-analysis, no significant association between overweight (25 kg/m2 ≤ BMI ≤29.9 kg/m2), obesity (BMI≥30 kg/m2) or excess weight (BMI≥25 kg/m2) and PD risk was observed. Conclusion: This meta-analysis does not support the notion that higher BMI materially increases PD risk. However, a week positive BMI-PD association that may be masked by confounders still cannot be excluded, and future prospective studies with a good control for potential confounding factors are needed. © 2015 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Wang Y.,148 Central Hospital of PLA | Wang Y.,Henan University | Li J.,148 Central Hospital of PLA | Hua L.,Zhengzhou University | And 7 more authors.
International Journal of Molecular Medicine | Year: 2016

Caffeic acid is a type of phenolic acid and organic acid. It is found in food (such as tomatoes, carrots, strawberries, blueberries and wheat), beverages (such as wine, tea, coffee and apple juice) as well as Chinese herbal medicines. In the present study, we examined the effects of caffeic acid on learning deficits in a rat model of Alzheimer's disease (AD). The rats were randomly divided into three groups: i) control group, ii) AD model group and iii) caffeic acid group. Caffeic acid significantly rescued learning deficits and increased cognitive function in the rats with AD as demonstrated by the Morris water maze task. Furthermore, caffeic acid administration resulted in a significant decrease in acetylcholinesterase activity and nitrite generation in the rats with AD compared with the AD model group. Furthermore, caffeic acid suppressed oxidative stress, inflammation, nuclear factorBp65 protein expression and caspase3 activity as well as regulating the protein expression of p53 and phosphorylated (p-)p38 MAPK expression in the rats with AD. These experimental results indicate that the beneficial effects of caffeic acid on learning deficits in a model of AD were due to the suppression of oxidative stress and inflammation through the p38 MAPK signaling pathway.

Loading 148 Central Hospital of PLA collaborators
Loading 148 Central Hospital of PLA collaborators