Time filter

Source Type

Portland, ME, United States

Danielson T.J.,7 State House Station | Loftin C.S.,U.S. Geological Survey | Tsomides L.,7 State House Station | Difranco J.L.,12 Canco Road | Connors B.,12 Canco Road
Journal of the North American Benthological Society

Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. © 2011 by The North American Benthological Society. Source

Danielson T.J.,7 State House Station | Loftin C.S.,U.S. Geological Survey | Tsomides L.,7 State House Station | Difranco J.L.,12 Canco Road | And 4 more authors.
Freshwater Science

State water-quality professionals developing new biological assessment methods often have difficulty relating assessment results to narrative criteria in water-quality standards. An alternative to selecting index thresholds arbitrarily is to include the Biological Condition Gradient (BCG) in the development of the assessment method. The BCG describes tiers of biological community condition to help identify and communicate the position of a water body along a gradient of water quality ranging from natural to degraded. Although originally developed for fish and macroinvertebrate communities of streams and rivers, the BCG is easily adapted to other habitats and taxonomic groups. We developed a discriminant analysis model with stream algal data to predict attainment of tiered aquatic-life uses in Maine's water-quality standards. We modified the BCG framework for Maine stream algae, related the BCG tiers to Maine's tiered aquatic-life uses, and identified appropriate algal metrics for describing BCG tiers. Using a modified Delphi method, 5 aquatic biologists independently evaluated algal community metrics for 230 samples from streams and rivers across the state and assigned a BCG tier (1-6) and Maine water quality class (AA/A, B, C, nonattainment of any class) to each sample. We used minimally disturbed reference sites to approximate natural conditions (Tier 1). Biologist class assignments were unanimous for 53% of samples, and 42% of samples differed by 1 class. The biologists debated and developed consensus class assignments. A linear discriminant model built to replicate a priori class assignments correctly classified 95% of 150 samples in the model training set and 91% of 80 samples in the model validation set. Locally derived metrics based on BCG taxon tolerance groupings (e.g., sensitive, intermediate, tolerant) were more effective than were metrics developed in other regions. Adding the algal discriminant model to Maine's existing macroinvertebrate discriminant model will broaden detection of biological impairment and further diagnose sources of impairment. The algal discriminant model is specific to Maine, but our approach of explicitly tying an assessment tool to tiered aquatic-life goals is widely transferrable to other regions, taxonomic groups, and waterbody types. © 2012 The Society for Freshwater Science. Source

Discover hidden collaborations