Time filter

Source Type

Madison, WI, United States

Buck M.E.,1101 University Avenue | Schwartz S.C.,1101 University Avenue | Lynn D.M.,1101 University Avenue | Lynn D.M.,University of Wisconsin - Madison
Chemistry of Materials

We report an approach to the fabrication of superhydrophobic thin films that is based on the "reactive" layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl- 4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150°. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150°). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ̃75°). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for 6 days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least 6 weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films using hydrophobic amines (e.g., aliphatic or semifluorinated aliphatic amines). Our results demonstrate a straightforward and substrate-independent approach to the design of superhydrophobic and reactive polymer-based coatings of potential use in a broad range of fundamental and applied contexts. © 2010 American Chemical Society. Source

Lockett M.R.,1101 University Avenue | Yuan Y.,1101 University Avenue | Smith L.M.,1101 University Avenue | Smith L.M.,University of Wisconsin - Madison | Lynn D.M.,1101 University Avenue
Chemistry of Materials

We report an approach to the in situ synthesis of oligonucleotide arrays on surfaces coated with crosslinked polymer multilayers. Our approach makes use of methods for the "reactive" layer-by-layer assembly of thin, amine-reactive multilayers using branched polyethyleneimine (PEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4′-dimethylazlactone) (PVDMA). Postfabrication treatment of film-coated glass substrates with d-glucamine or 4-amino-1-butanol yielded hydroxyl-functionalized films suitable for the Maskless Array Synthesis (MAS) of oligonucleotide arrays. Glucamine-functionalized films yielded arrays of oligonucleotides with fluorescence intensities and signal-to-noise ratios (after hybridization with fluorescently labeled complementary strands) comparable to those of arrays fabricated on conventional silanized glass substrates. These arrays could be exposed to multiple hybridization/dehybridization cycles with only moderate loss of hybridization density. The versatility of the layer-by-layer approach also permitted synthesis directly on thin sheets of film-coated poly(ethylene terephthalate) (PET) to yield flexible oligonucleotide arrays that could be readily manipulated (e.g., bent) and cut into smaller arrays. To our knowledge, this work presents the first use of polymer multilayers as a substrate for the multistep synthesis of complex molecules. Our results demonstrate that these films are robust and able to withstand the ∼450 individual chemical processing steps associated with MAS (as well as manipulations required to hybridize, image, and dehybridize the arrays) without large-scale cracking, peeling, or delamination of the thin films. The combination of layer-by-layer assembly and MAS provides a means of fabricating functional oligonucleotide arrays on a range of different materials and substrates. This approach may also prove useful for the fabrication of supports for the solid-phase synthesis and screening of other macromolecular or small-molecule agents. © 2011 American Chemical Society. Source

Sheridan R.T.C.,Babcock | Hudon J.,1101 University Avenue | Hank J.A.,University of Wisconsin - Madison | Sondel P.M.,University of Wisconsin - Madison | And 2 more authors.

Immunotherapy is a promising strategy for targeting tumors. One emerging approach is to harness the immune effector functions of natural antibodies to destroy tumor cells. Dinitrophenyl (DNP) and the galactose-α-1,3-galactose (αGal) epitope are two haptens that bind endogenous antibodies. One potential alternative is the deoxysugar L-rhamnose. We compared these candidates by using a biosensor assay to evaluate human sera for endogenous antibody concentration, antibody isotype distribution, and longevity of antibody-hapten interactions. Antibodies recognizing α-rhamnose are of equal or greater abundance and affinity as those recognizing αGal. Moreover, both rhamnose and αGal epitopes are more effective than DNP at recruiting the IgG antibody subtype. Exposure of tumor cells to rhamnose-bearing glycolipids and human serum promotes complement-mediated cytotoxicity. These data highlight the utility of α-rhamnose-containing glycoconjugates to direct the immune system to target cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Perez D.J.,University of Colima | Perez D.J.,1101 University Avenue | Zakai U.I.,1101 University Avenue | Guo S.,Wisconsin Institutes for Medical Research | And 5 more authors.
Australian Journal of Chemistry

The synthesis and characterisation of new silicon-containing amides and esters derived from ibuprofen is reported. These compounds were tested against nuclear transcription factor β (NF-β). Higher inhibition values than those of ibuprofen were achieved by the new amides 10a-10d; ester derivatives did not show inhibitory activity. The cytotoxicity of these new derivatives was screened; none of them displayed significant toxicity at the screened doses. A molecular docking calculation on IKKβ (an enzyme related to NF-β activation) was carried out and the results showed that the amides interact better than ibuprofen with key residues, which are important to the inhibition of IKKβ. © CSIRO 2016. Source

Discover hidden collaborations