Time filter

Source Type

Villejuif, France

Patnaik M.M.,Mayo Medical School | Itzykson R.,University of Paris Descartes | Itzykson R.,Institute Gustave Roussy | Itzykson R.,University Paris - Sud | And 11 more authors.
Leukemia | Year: 2014

In a cohort of 466 patients, we sought to clarify the prognostic relevance of ASXL1 and SETBP1 mutations, among others, in World Health Organization-defined chronic myelomonocytic leukemia (CMML) and its added value to the Mayo prognostic model. In univariate analysis, survival was adversely affected by ASXL1 (nonsense and frameshift) but not SETBP1 mutations. In multivariable analysis, ASXL1 mutations, absolute monocyte count >10 × 10(9)/l, hemoglobin <10 g/dl, platelets <100 × 10(9)/l and circulating immature myeloid cells were independently predictive of shortened survival: hazard ratio (95% confidence interval (CI)) values were 1.5 (1.1-2.0), 2.2 (1.6-3.1), 2.0 (1.6-2.6), 1.5 (1.2-1.9) and 2.0 (1.4-2.7), respectively. A regression coefficient-based prognostic model based on these five risk factors delineated high (≥3 risk factors; HR 6.2, 95% CI 3.7-10.4) intermediate-2 (2 risk factors; HR 3.4, 95% CI 2.0-5.6) intermediate-1 (one risk factor; HR 1.9, 95% CI 1.1-3.3) and low (no risk factors) risk categories with median survivals of 16, 31, 59 and 97 months, respectively. Neither ASXL1 nor SETBP1 mutations predicted leukemic transformation. The current study confirms the independent prognostic value of nonsense/frameshift ASXL1 mutations in CMML and signifies its added value to the Mayo prognostic model, as had been shown previously in the French consortium model.Leukemia advance online publication, 9 May 2014; doi:10.1038/leu.2014.125.

Marivin A.,French Institute of Health and Medical Research | Marivin A.,University of Burgundy | Berthelet J.,French Institute of Health and Medical Research | Berthelet J.,University of Burgundy | And 14 more authors.
Oncogene | Year: 2013

Tumour necrosis factor-α (TNF) is a cytokine endowed with multiple functions, depending on the cellular and environmental context. TNF receptor engagement induces the formation of a multimolecular complex including the TNFR-associated factor TRAF2, the receptor-interaction protein kinase RIP1 and the cellular inhibitor of apoptosis cIAP1, the latter being essential for NF-κB activation. Here, we show that cIAP1 also regulates TNF-induced actin cytoskeleton reorganization through a cdc42-dependent, NF-κB-independent pathway. Deletion of cIAP1 prevents TNF-induced filopodia and cdc42 activation. The expression of cIAP1 or its E3-ubiquitin ligase-defective mutant restores the ability of cIAP1-/- MEFs to produce filopodia, whereas a cIAP1 mutant unable to bind TRAF2 does not. Accordingly, the silencing of TRAF2 inhibits TNF-mediated filopodia formation, whereas silencing of RIP1 does not. cIAP1 directly binds cdc42 and promotes its RhoGDIα-mediated stabilization. TNF decreases cIAP1-cdc42 interaction, suggesting that TNF-induced recruitment of cIAP1/TRAF2 to the receptor releases cdc42, which in turn triggers actin remodeling. cIAP1 also regulates cdc42 activation in response to EGF and HRas-V12 expression. A downregulation of cIAP1 altered the cell polarization, the cell adhesion to endothelial cells and cell intercalation, which are cdc42-dependent processes. Finally, we demonstrated that the deletion of cIAP1 regulated the HRas-V12-mediated transformation process, including anchorage-dependent cell growth, tumour growth in a xenograft model and the development of experimental metastasis in the lung.Oncogene advance online publication, 25 November 2013; doi:10.1038/onc.2013.499.

Discover hidden collaborations